Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.

...

No Format
#!/bin/bash
#PBS -m abe
#PBS -M YourEmail@griffithuni.edu.au

#PBS -N  myJupyterJob
###If not  cembd_jlab
#PBS -q dljun

#PBS -W group_list=deeplearning -A deeplearning
###Other options group_list=aspen -A aspenusing gpu,you should not request gpuq2. You can use workq or something similar
#PBS -q gpuq2
### Number of nodes:Number of CPUs:Number of threads per node.
###If not using gpu,you should not request ngpus
#PBS -l select=1:ncpus=161:ngpus=1:mem=100gb10gb,walltime=60010:00:00
###PBS
-l select=1:ncpus=32:ngpus=0:mem=100gb,walltime=300:00:00
### Add current shell environment to job (comment out if not needed)
# The job's working directory
cd $PBS_O_WORKDIR
module load pythonanaconda3/3.8.8
module load gcc/4.9.32021.11
#activate your env
#source activate  protein
source /usr/local/bin/s3proxy.sh
unset PYTHONPATH
source venv_temp_py38/bin/activate
jupyter -lab --no-browser --port=56788889 --ip=0.0.0.0


After running the above script and the job has started on the compute node, you run the following command on your local machine to start port forwarding. 

For n060 gpu node

ssh -CNL 5678:localhost:5678 s123456@n060.rcs.griffith.edu.au

For node gpu node n061:

ssh  -N -f -L 8889:n061:8889 -J s123456@gc-prd-hpclogin1.rcs.griffith.edu.au s123456@n061


FAQ and Troubleshooting


Getting Help

...