Table of Contents |
---|
Introduction
...
No Format |
---|
Check if this returns correctly /usr/local/cuda-10.0/samples/bin/x86_64/linux/release/deviceQuery >>>>>>> /usr/local/cuda-10.0/samples/bin/x86_64/linux/release/deviceQuery Starting... CUDA Device Query (Runtime API) version (CUDART static linking) Detected 6 CUDA Capable device(s) Device 0: "Tesla V100-PCIE-32GB" CUDA Driver Version / Runtime Version 10.0 / 10.0 CUDA Capability Major/Minor version number: 7.0 Total amount of global memory: 32480 MBytes (34058272768 bytes) (80) Multiprocessors, ( 64) CUDA Cores/MP: 5120 CUDA Cores GPU Max Clock rate: 1380 MHz (1.38 GHz) Memory Clock rate: 877 Mhz Memory Bus Width: 4096-bit L2 Cache Size: 6291456 bytes Maximum Texture Dimension Size (x,y,z) 1D=(131072), 2D=(131072, 65536), 3D=(16384, 16384, 16384) Maximum Layered 1D Texture Size, (num) layers 1D=(32768), 2048 layers Maximum Layered 2D Texture Size, (num) layers 2D=(32768, 32768), 2048 layers Total amount of constant memory: 65536 bytes Total amount of shared memory per block: 49152 bytes Total number of registers available per block: 65536 Warp size: 32 Maximum number of threads per multiprocessor: 2048 Maximum number of threads per block: 1024 Max dimension size of a thread block (x,y,z): (1024, 1024, 64) Max dimension size of a grid size (x,y,z): (2147483647, 65535, 65535) Maximum memory pitch: 2147483647 bytes Texture alignment: 512 bytes Concurrent copy and kernel execution: Yes with 7 copy engine(s) Run time limit on kernels: No Integrated GPU sharing Host Memory: No Support host page-locked memory mapping: Yes Alignment requirement for Surfaces: Yes Device has ECC support: Enabled Device supports Unified Addressing (UVA): Yes Device supports Compute Preemption: Yes Supports Cooperative Kernel Launch: Yes Supports MultiDevice Co-op Kernel Launch: Yes Device PCI Domain ID / Bus ID / location ID: 0 / 20 / 0 Compute Mode: < Default (multiple host threads can use ::cudaSetDevice() with device simultaneously) > Device 1: "Tesla V100-PCIE-32GB" CUDA Driver Version / Runtime Version 10.0 / 10.0 CUDA Capability Major/Minor version number: 7.0 Total amount of global memory: 32480 MBytes (34058272768 bytes) (80) Multiprocessors, ( 64) CUDA Cores/MP: 5120 CUDA Cores GPU Max Clock rate: 1380 MHz (1.38 GHz) Memory Clock rate: 877 Mhz Memory Bus Width: 4096-bit L2 Cache Size: 6291456 bytes Maximum Texture Dimension Size (x,y,z) 1D=(131072), 2D=(131072, 65536), 3D=(16384, 16384, 16384) Maximum Layered 1D Texture Size, (num) layers 1D=(32768), 2048 layers Maximum Layered 2D Texture Size, (num) layers 2D=(32768, 32768), 2048 layers Total amount of constant memory: 65536 bytes Total amount of shared memory per block: 49152 bytes Total number of registers available per block: 65536 Warp size: 32 Maximum number of threads per multiprocessor: 2048 Maximum number of threads per block: 1024 Max dimension size of a thread block (x,y,z): (1024, 1024, 64) Max dimension size of a grid size (x,y,z): (2147483647, 65535, 65535) Maximum memory pitch: 2147483647 bytes Texture alignment: 512 bytes Concurrent copy and kernel execution: Yes with 7 copy engine(s) Run time limit on kernels: No Integrated GPU sharing Host Memory: No Support host page-locked memory mapping: Yes Alignment requirement for Surfaces: Yes Device has ECC support: Enabled Device supports Unified Addressing (UVA): Yes Device supports Compute Preemption: Yes Supports Cooperative Kernel Launch: Yes Supports MultiDevice Co-op Kernel Launch: Yes Device PCI Domain ID / Bus ID / location ID: 0 / 21 / 0 Compute Mode: < Default (multiple host threads can use ::cudaSetDevice() with device simultaneously) > Device 2: "Tesla V100-PCIE-32GB" CUDA Driver Version / Runtime Version 10.0 / 10.0 CUDA Capability Major/Minor version number: 7.0 Total amount of global memory: 32480 MBytes (34058272768 bytes) (80) Multiprocessors, ( 64) CUDA Cores/MP: 5120 CUDA Cores GPU Max Clock rate: 1380 MHz (1.38 GHz) Memory Clock rate: 877 Mhz Memory Bus Width: 4096-bit L2 Cache Size: 6291456 bytes Maximum Texture Dimension Size (x,y,z) 1D=(131072), 2D=(131072, 65536), 3D=(16384, 16384, 16384) Maximum Layered 1D Texture Size, (num) layers 1D=(32768), 2048 layers Maximum Layered 2D Texture Size, (num) layers 2D=(32768, 32768), 2048 layers Total amount of constant memory: 65536 bytes Total amount of shared memory per block: 49152 bytes Total number of registers available per block: 65536 Warp size: 32 Maximum number of threads per multiprocessor: 2048 Maximum number of threads per block: 1024 Max dimension size of a thread block (x,y,z): (1024, 1024, 64) Max dimension size of a grid size (x,y,z): (2147483647, 65535, 65535) Maximum memory pitch: 2147483647 bytes Texture alignment: 512 bytes Concurrent copy and kernel execution: Yes with 7 copy engine(s) Run time limit on kernels: No Integrated GPU sharing Host Memory: No Support host page-locked memory mapping: Yes Alignment requirement for Surfaces: Yes Device has ECC support: Enabled Device supports Unified Addressing (UVA): Yes Device supports Compute Preemption: Yes Supports Cooperative Kernel Launch: Yes Supports MultiDevice Co-op Kernel Launch: Yes Device PCI Domain ID / Bus ID / location ID: 0 / 57 / 0 Compute Mode: < Default (multiple host threads can use ::cudaSetDevice() with device simultaneously) > Device 3: "Tesla V100-PCIE-32GB" CUDA Driver Version / Runtime Version 10.0 / 10.0 CUDA Capability Major/Minor version number: 7.0 Total amount of global memory: 32480 MBytes (34058272768 bytes) (80) Multiprocessors, ( 64) CUDA Cores/MP: 5120 CUDA Cores GPU Max Clock rate: 1380 MHz (1.38 GHz) Memory Clock rate: 877 Mhz Memory Bus Width: 4096-bit L2 Cache Size: 6291456 bytes Maximum Texture Dimension Size (x,y,z) 1D=(131072), 2D=(131072, 65536), 3D=(16384, 16384, 16384) Maximum Layered 1D Texture Size, (num) layers 1D=(32768), 2048 layers Maximum Layered 2D Texture Size, (num) layers 2D=(32768, 32768), 2048 layers Total amount of constant memory: 65536 bytes Total amount of shared memory per block: 49152 bytes Total number of registers available per block: 65536 Warp size: 32 Maximum number of threads per multiprocessor: 2048 Maximum number of threads per block: 1024 Max dimension size of a thread block (x,y,z): (1024, 1024, 64) Max dimension size of a grid size (x,y,z): (2147483647, 65535, 65535) Maximum memory pitch: 2147483647 bytes Texture alignment: 512 bytes Concurrent copy and kernel execution: Yes with 7 copy engine(s) Run time limit on kernels: No Integrated GPU sharing Host Memory: No Support host page-locked memory mapping: Yes Alignment requirement for Surfaces: Yes Device has ECC support: Enabled Device supports Unified Addressing (UVA): Yes Device supports Compute Preemption: Yes Supports Cooperative Kernel Launch: Yes Supports MultiDevice Co-op Kernel Launch: Yes Device PCI Domain ID / Bus ID / location ID: 0 / 58 / 0 Compute Mode: < Default (multiple host threads can use ::cudaSetDevice() with device simultaneously) > Device 4: "Tesla V100-PCIE-32GB" CUDA Driver Version / Runtime Version 10.0 / 10.0 CUDA Capability Major/Minor version number: 7.0 Total amount of global memory: 32480 MBytes (34058272768 bytes) (80) Multiprocessors, ( 64) CUDA Cores/MP: 5120 CUDA Cores GPU Max Clock rate: 1380 MHz (1.38 GHz) Memory Clock rate: 877 Mhz Memory Bus Width: 4096-bit L2 Cache Size: 6291456 bytes Maximum Texture Dimension Size (x,y,z) 1D=(131072), 2D=(131072, 65536), 3D=(16384, 16384, 16384) Maximum Layered 1D Texture Size, (num) layers 1D=(32768), 2048 layers Maximum Layered 2D Texture Size, (num) layers 2D=(32768, 32768), 2048 layers Total amount of constant memory: 65536 bytes Total amount of shared memory per block: 49152 bytes Total number of registers available per block: 65536 Warp size: 32 Maximum number of threads per multiprocessor: 2048 Maximum number of threads per block: 1024 Max dimension size of a thread block (x,y,z): (1024, 1024, 64) Max dimension size of a grid size (x,y,z): (2147483647, 65535, 65535) Maximum memory pitch: 2147483647 bytes Texture alignment: 512 bytes Concurrent copy and kernel execution: Yes with 7 copy engine(s) Run time limit on kernels: No Integrated GPU sharing Host Memory: No Support host page-locked memory mapping: Yes Alignment requirement for Surfaces: Yes Device has ECC support: Enabled Device supports Unified Addressing (UVA): Yes Device supports Compute Preemption: Yes Supports Cooperative Kernel Launch: Yes Supports MultiDevice Co-op Kernel Launch: Yes Device PCI Domain ID / Bus ID / location ID: 0 / 136 / 0 Compute Mode: < Default (multiple host threads can use ::cudaSetDevice() with device simultaneously) > Device 5: "Tesla V100-PCIE-32GB" CUDA Driver Version / Runtime Version 10.0 / 10.0 CUDA Capability Major/Minor version number: 7.0 Total amount of global memory: 32480 MBytes (34058272768 bytes) (80) Multiprocessors, ( 64) CUDA Cores/MP: 5120 CUDA Cores GPU Max Clock rate: 1380 MHz (1.38 GHz) Memory Clock rate: 877 Mhz Memory Bus Width: 4096-bit L2 Cache Size: 6291456 bytes Maximum Texture Dimension Size (x,y,z) 1D=(131072), 2D=(131072, 65536), 3D=(16384, 16384, 16384) Maximum Layered 1D Texture Size, (num) layers 1D=(32768), 2048 layers Maximum Layered 2D Texture Size, (num) layers 2D=(32768, 32768), 2048 layers Total amount of constant memory: 65536 bytes Total amount of shared memory per block: 49152 bytes Total number of registers available per block: 65536 Warp size: 32 Maximum number of threads per multiprocessor: 2048 Maximum number of threads per block: 1024 Max dimension size of a thread block (x,y,z): (1024, 1024, 64) Max dimension size of a grid size (x,y,z): (2147483647, 65535, 65535) Maximum memory pitch: 2147483647 bytes Texture alignment: 512 bytes Concurrent copy and kernel execution: Yes with 7 copy engine(s) Run time limit on kernels: No Integrated GPU sharing Host Memory: No Support host page-locked memory mapping: Yes Alignment requirement for Surfaces: Yes Device has ECC support: Enabled Device supports Unified Addressing (UVA): Yes Device supports Compute Preemption: Yes Supports Cooperative Kernel Launch: Yes Supports MultiDevice Co-op Kernel Launch: Yes Device PCI Domain ID / Bus ID / location ID: 0 / 137 / 0 Compute Mode: < Default (multiple host threads can use ::cudaSetDevice() with device simultaneously) > > Peer access from Tesla V100-PCIE-32GB (GPU0) -> Tesla V100-PCIE-32GB (GPU1) : Yes > Peer access from Tesla V100-PCIE-32GB (GPU0) -> Tesla V100-PCIE-32GB (GPU2) : Yes > Peer access from Tesla V100-PCIE-32GB (GPU0) -> Tesla V100-PCIE-32GB (GPU3) : Yes > Peer access from Tesla V100-PCIE-32GB (GPU0) -> Tesla V100-PCIE-32GB (GPU4) : Yes > Peer access from Tesla V100-PCIE-32GB (GPU0) -> Tesla V100-PCIE-32GB (GPU5) : Yes > Peer access from Tesla V100-PCIE-32GB (GPU1) -> Tesla V100-PCIE-32GB (GPU0) : Yes > Peer access from Tesla V100-PCIE-32GB (GPU1) -> Tesla V100-PCIE-32GB (GPU2) : Yes > Peer access from Tesla V100-PCIE-32GB (GPU1) -> Tesla V100-PCIE-32GB (GPU3) : Yes > Peer access from Tesla V100-PCIE-32GB (GPU1) -> Tesla V100-PCIE-32GB (GPU4) : Yes > Peer access from Tesla V100-PCIE-32GB (GPU1) -> Tesla V100-PCIE-32GB (GPU5) : Yes > Peer access from Tesla V100-PCIE-32GB (GPU2) -> Tesla V100-PCIE-32GB (GPU0) : Yes > Peer access from Tesla V100-PCIE-32GB (GPU2) -> Tesla V100-PCIE-32GB (GPU1) : Yes > Peer access from Tesla V100-PCIE-32GB (GPU2) -> Tesla V100-PCIE-32GB (GPU3) : Yes > Peer access from Tesla V100-PCIE-32GB (GPU2) -> Tesla V100-PCIE-32GB (GPU4) : Yes > Peer access from Tesla V100-PCIE-32GB (GPU2) -> Tesla V100-PCIE-32GB (GPU5) : Yes > Peer access from Tesla V100-PCIE-32GB (GPU3) -> Tesla V100-PCIE-32GB (GPU0) : Yes > Peer access from Tesla V100-PCIE-32GB (GPU3) -> Tesla V100-PCIE-32GB (GPU1) : Yes > Peer access from Tesla V100-PCIE-32GB (GPU3) -> Tesla V100-PCIE-32GB (GPU2) : Yes > Peer access from Tesla V100-PCIE-32GB (GPU3) -> Tesla V100-PCIE-32GB (GPU4) : Yes > Peer access from Tesla V100-PCIE-32GB (GPU3) -> Tesla V100-PCIE-32GB (GPU5) : Yes > Peer access from Tesla V100-PCIE-32GB (GPU4) -> Tesla V100-PCIE-32GB (GPU0) : Yes > Peer access from Tesla V100-PCIE-32GB (GPU4) -> Tesla V100-PCIE-32GB (GPU1) : Yes > Peer access from Tesla V100-PCIE-32GB (GPU4) -> Tesla V100-PCIE-32GB (GPU2) : Yes > Peer access from Tesla V100-PCIE-32GB (GPU4) -> Tesla V100-PCIE-32GB (GPU3) : Yes > Peer access from Tesla V100-PCIE-32GB (GPU4) -> Tesla V100-PCIE-32GB (GPU5) : Yes > Peer access from Tesla V100-PCIE-32GB (GPU5) -> Tesla V100-PCIE-32GB (GPU0) : Yes > Peer access from Tesla V100-PCIE-32GB (GPU5) -> Tesla V100-PCIE-32GB (GPU1) : Yes > Peer access from Tesla V100-PCIE-32GB (GPU5) -> Tesla V100-PCIE-32GB (GPU2) : Yes > Peer access from Tesla V100-PCIE-32GB (GPU5) -> Tesla V100-PCIE-32GB (GPU3) : Yes > Peer access from Tesla V100-PCIE-32GB (GPU5) -> Tesla V100-PCIE-32GB (GPU4) : Yes deviceQuery, CUDA Driver = CUDART, CUDA Driver Version = 10.0, CUDA Runtime Version = 10.0, NumDevs = 6 Result = PASS >>>>>>>> |
gpu issues -
...
Sample torch.device.py
No Format |
---|
https://www.tensorflow.org/tutorials cat tensorflowTutorial.py ########################### import tensorflow as tf mnist = tf.keras.datasets.mnist (x_more torch.device.py import torch torch.cuda.is_available() # setting device on GPU if available, else CPU device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') print('Using device:', device) print() #Additional Info when using cuda if device.type == 'cuda': print(torch.cuda.get_device_name(0)) print('Memory Usage:') print('Allocated:', round(torch.cuda.memory_allocated(0)/1024**3,1), 'GB') print('Cached: ', round(torch.cuda.memory_cached(0)/1024**3,1), 'GB') |
Source: https://stackoverflow.com/questions/48152674/how-to-check-if-pytorch-is-using-the-gpu
gpu issues - Sample Tensorflow script
No Format |
---|
https://www.tensorflow.org/tutorials
cat tensorflowTutorial.py
###########################
import tensorflow as tf
mnist = tf.keras.datasets.mnist
(x_train, y_train),(x_test, y_test) = mnist.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0
model = tf.keras.models.Sequential([
tf.keras.layers.Flatten(input_shape=(28, 28)),
tf.keras.layers.Dense(512, activation=tf.nn.relu),
tf.keras.layers.Dropout(0.2),
tf.keras.layers.Dense(10, activation=tf.nn.softmax)
])
model.compile(optimizer='adam',
loss='sparse_categorical_crossentropy',
metrics=['accuracy'])
model.fit(x_train, y_train, epochs=5)
model.evaluate(x_test, y_test)
|
...
- https://www.pbsworks.com/pdfs/PBSAdminGuide18.2.pdf
- https://conf-ers.griffith.edu.au/download/attachments/21332198/xl270d_gen10.pdf?api=v2
- https://www.microway.com/hpc-tech-tips/nvidia-smi_control-your-gpus/
- https://weeraman.com/put-that-gpu-to-good-use-with-python-e5a437168c01
- https://stackoverflow.com/questions/48152674/how-to-check-if-pytorch-is-using-the-gpu
- https://discuss.pytorch.org/t/solved-make-sure-that-pytorch-using-gpu-to-compute/4870/14