...
No Format |
---|
#!/bin/bash #PBS -N cuda #PBS -l walltime=100:00:00 #PBS -l select=1:ncpus=1:mem=15gb2gb:ngpus=1,walltime=01:00:00 #PBS -W group_list=gpu #PBS -q gpu gpuq2 cd $PBS_O_WORKDIR source $HOME/.bashrc module load cudaanaconda3/4.0.172022.10 source activate TorchA100 echo "Hello from $HOSTNAME: date = `date`" nvcc --version echo "Finished at `date`" |
sample 2
No Format |
---|
#!/bin/bash -l #PBS -m abe #PBS -M emailaddress@griffith.edu.au #PBS -N CudaJob #PBS -q gpu #PBS -l select=21:ncpus=2:mem=2gb:ngpus=1 #PBS -W group_list=gpu cd $PBS_O_WORKDIR source $HOME/.bashrc module load NAMD/NAMD28b1 module load mpi/intel-4.0 echo "Starting job" mpirun -r ssh -n 2 namd2 +idlepoll /export/home/s2594054/pbs/namd/apoa1/namd/apoa1.namd > apoa1.namd.log echo "Done with job" |
...
No Format |
---|
qsub run.pbs 824.pbsserver [s2594054@n027 namd]$ qstat Job id Name User Time Use S Queue ---------------- ---------------- ---------------- -------- - ----- 812.pbsserver 3nss s2795116 00:00:02 R workq 813.pbsserver 1ivf_naen s2795116 00:00:01 R workq 818.pbsserver 1ivf_apo s2795116 00:00:01 R workq 819.pbsserver 1nn2 s2795116 00:00:00 R workq 821.pbsserver 1ivg s2795116 00:00:00 R workq 824.pbsserver CudaJob s2594054 00:00:00 R gpu |
Installation
We use Tesla nvidia C2050 GPUs.
CUDA-enabled Device Driver
A specific device driver has been installed to support CUDA
http://www.nvidia.com/Download/index.aspx?lang=en-us
Product Type: tesla
Product Series: C-Class
Product: Tesla C2050
tesla c-2050 drivers ==>
...
Another sample PBS script (n060 node)
No Format |
---|
#!/bin/bash
#PBS -m abe
#PBS -M yourEmail@griffith.edu.au
#PBS -N testImage
#PBS -q dljun@n060
#PBS -W group_list=deeplearning -A deeplearning
#PBS -l select=1:ncpus=1:ngpus=1:mem=12gb,walltime=300:00:00
#PBS -j oe
cd $PBS_O_WORKDIR
module load anaconda/5.3.1py3
source activate tensorflow-gpu
echo $CUDA_VISIBLE_DEVICES
GPUNUM=`echo $CUDA_VISIBLE_DEVICES`
sleep 2000
##echo "python main.py --cfg cfg/config3.yml --gpu $GPUNUM &"
|
Installation
We use Tesla nvidia C2050 GPUs.
CUDA-enabled Device Driver
A specific device driver has been installed to support CUDA
http://www.nvidia.com/Download/index.aspx?lang=en-us
Product Type: tesla
Product Series: C-Class
Product: Tesla C2050
tesla c-2050 drivers ==>
No Format |
---|
----------------------- ls /devsbin/nvidia* /dev/nvidia0 /dev/nvidia1 /dev/nvidiactl ----------------------- /sbin/modprobe -l|grep -i nvidia kernel/drivers/video/backlight/mbp_nvidia_bl.ko kernel/drivers/video/nvidia/nvidiafb.ko kernel/drivers/video/nvidia.ko ------lspci | grep -i NVIDIA 03:00.0 VGA compatible controller: nVidia Corporation GF100 [Tesla C2050 / C2070] (rev a3) 03:00.1 Audio device: nVidia Corporation GF100 High Definition Audio Controller (rev a1) 85:00.0 VGA compatible controller: nVidia Corporation GF100 [Tesla C2050 / C2070] (rev a3) 85:00.1 Audio device: nVidia Corporation GF100 High Definition Audio Controller (rev a1) ----------------------- /sbin/lspci | |
No Format |
shgrep NVIDIA-Linux-x86_64-285.05.09.run --list|awk '{print $6}' /32/ ./32/libnvidia-glcore.so.285.05.09 ./32/tls/ ./32/tls/libnvidia-tls.so.285.05.09 ./32/libOpenCL.so.1.0.0 ./32/vdpau/ ./32/libvdpau.so.285.05.09 ./32/libvdpau_nvidia.so.285.05.09 ./32/libGL.la ./32/libvdpau_trace.so.285.05.09 ./32/libnvidia-tls.so.285.05.09 ./32/libcuda.so.285.05.09 ./32/libnvidia-ml.so.285.05.09 ./32/libGL.so.285.05.09 ./32/libnvidia-compiler.so.285.05.09 ./libnvidia-glcore.so.285.05.09 ./libnvcuvid.so.285.05.09 ./libXvMCNVIDIA.so.285.05.09 ./gl.h ./libglx.so.285.05.09 ./tls/ ./tls/libnvidia-tls.so.285.05.09 ./NVIDIA_Changelog ./nvidia-debugdump ./makeself.sh ./libOpenCL.so.1.0.0 ./libvdpau.so.285.05.09 ./libvdpau_nvidia.so.285.05.09 ./mkprecompiled ./pkg-history.txt ./LICENSE ./libGL.la ./nvidia-settings ./libvdpau_trace.so.285.05.09 ./nvidia-settings.desktop ./README.txt ./nvidia_drv.so ./glx.h ./nvidia.icd ./nvidia-bug-report.sh ./nvidia-smi.1.gz ./libnvidia-cfg.so.285.05.09 -i NVIDIA | grep "VGA compatible controller" 03:00.0 VGA compatible controller: nVidia Corporation GF100 [Tesla C2050 / C2070] (rev a3) 85:00.0 VGA compatible controller: nVidia Corporation GF100 [Tesla C2050 / C2070] (rev a3) ----------------------- ls /dev/nvidia* /dev/nvidia0 /dev/nvidia1 /dev/nvidiactl ----------------------- /sbin/modprobe -l|grep -i nvidia kernel/drivers/video/backlight/mbp_nvidia_bl.ko kernel/drivers/video/nvidia/nvidiafb.ko kernel/drivers/video/nvidia.ko ----------------------- |
No Format |
---|
sh NVIDIA-Linux-x86_64---------------- <snip> --------------------------------- ./kernel/rmil.h ./kernel/xapi-sdk.h ./kernel/os-smp.c ./kernel/nv-vm.c ./kernel/os-agp.c ./kernel/os-usermap.c ./kernel/nv-linux.h ./glxext.h ./libXvMCNVIDIA.a |
Software
CUDA Toolkit
The CUDA Toolkit has all the development tools, libraries, and documentation you need to create applications for the CUDA architecture, including:
CUDA C/C++ Compiler
GPU Debugging & Profiling Tools CUDA-GDB debugger
GPU-Accelerated Math Libraries and Performance Primitives
(GPU-accelerated BLAS library,GPU-accelerated FFT library,GPU-accelerated Sparse Matrix library,GPU-accelerated RNG library)
C/C++ compiler
Visual Profiler
Additional tools and documentation
http://developer.nvidia.com/cuda-toolkit
sh cudatoolkit_4.0.17_linux_64_rhel6.0.run --list
No Format |
---|
sh cudatoolkit_4.0.17_linux_64_rhel6.0.run --list|awk '{print $6}'|sed 's/^./\/usr\/local\/cuda/g'
/usr/local/cuda/
/usr/local/cuda/install-linux.pl
/usr/local/cuda/doc/
/usr/local/cuda/doc/Thrust_Quick_Start_Guide.pdf
/usr/local/cuda/doc/CUSPARSE_Library.pdf
/usr/local/cuda/doc/cuda-memcheck.pdf
/usr/local/cuda/doc/CUBLAS_Library.pdf
/usr/local/cuda/doc/cuobjdump.pdf
/usr/local/cuda/doc/OpenCL_Implementation_Notes.txt
/usr/local/cuda/doc/OpenCL_Jumpstart_Guide.pdf
/usr/local/cuda/doc/CUDA_Toolkit_Reference_Manual.html
/usr/local/cuda/doc/OpenCL_Programming_Overview.pdf
/usr/local/cuda/doc/CUDA_C_Best_Practices_Guide.pdf
/usr/local/cuda/doc/OpenCL_Best_Practices_Guide.pdf
/usr/local/cuda/doc/ptx_isa_2.3.pdf
/usr/local/cuda/doc/CUDA_C_Programming_Guide.pdf
/usr/local/cuda/doc/ptx_isa_1.4.pdf
/usr/local/cuda/doc/CUDA_Toolkit_Reference_Manual.pdf
/usr/local/cuda/doc/Fermi_Tuning_Guide.pdf
/usr/local/cuda/doc/html/
---------------------------------
<snip>
---------------------------------
/usr/local/cuda/computeprof/projects/analysis_boxFilter_Context_0.csv
/usr/local/cuda/computeprof/projects/eigenvalues_eigenvalues_Context_0.csv
/usr/local/cuda/computeprof/projects/analysis_convolutionSeparable_Context_0.csv
/usr/local/cuda/computeprof/projects/MonteCarloMultiGPU_Session1_Context_2.csv
/usr/local/cuda/computeprof/Compute_Visual_Profiler_Release_Notes_Linux.txt
/usr/local/cuda/src/
/usr/local/cuda/src/fortran_thunking.c
/usr/local/cuda/src/icc_math.h.diff
/usr/local/cuda/src/fortran_thunking.h
/usr/local/cuda/src/fortran_common.h
/usr/local/cuda/src/fortran.c
/usr/local/cuda/src/cusparse_fortran.h
/usr/local/cuda/src/cusparse_fortran.c
/usr/local/cuda/src/fortran.h
/usr/local/cuda/src/cusparse_fortran_common.h
|
CUDA SDK - gpucomputingsdk
Installation Directory: /usr/local/cuda/NVIDIA_GPU_Computing_SDK
http://developer.nvidia.com/gpu-computing-sdk
The NVIDIA GPU Computing SDK provides hundreds of code samples, white papers, to help you get started on the path of writing software with CUDA C/C++, OpenCL or DirectCompute.
http://developer.download.nvidia.com/compute/cuda/4_0/sdk/gpucomputingsdk_4.0.17_linux.run
No Format |
---|
sh gpucomputingsdk_4.0.17_linux.run --list|awk '{print $6}' ./sdk/ ./sdk/doc/ ./sdk/doc/release/ ./sdk/doc/release/CUDA_SDK_New_Features_Guide.pdf ./sdk/doc/release/Getting_Started_With_CUDA_SDK_Samples.pdf ./sdk/doc/release/License.pdf ./sdk/doc/GPU_COMPUTING_SDK_Description.rtf ./sdk/doc/CUDA_SDK_Release_Notes.txt ./sdk/doc/OpenCL_Release_Notes.txt ./sdk/shared/ ./sdk/shared/inc/ ./sdk/shared/inc/GL/ ./sdk/shared/inc/GL/freeglut.h ./sdk/shared/inc/GL/freeglut_ext.h ./sdk/shared/inc/GL/freeglut_std.h ./sdk/shared/inc/GL/gl.h ./sdk/shared/inc/GL/glew.h ./sdk/shared/inc/GL/glext.h ./sdk/shared/inc/GL/glu.h ./sdk/shared/inc/GL/glut.h ./sdk/shared/inc/GL/glxew.h ./sdk/shared/inc/GL/glxext.h ./sdk/shared/inc/GL/wglew.h ./sdk/shared/inc/cmd_arg_reader.h ./sdk/shared/inc/dynlink/ ./sdk/shared/inc/dynlink/channel_descriptor_dynlink.h ./sdk/shared/inc/dynlink/common_functions_dynlink.h ./sdk/shared/inc/dynlink/cuda_drvapi_dynlink.h ./sdk/shared/inc/dynlink/cuda_runtime_api_dynlink.h ./sdk/shared/inc/dynlink/cuda_runtime_dynlink.h ./sdk/shared/inc/dynlink/cuda_texture_types_dynlink.h ./sdk/shared/inc/dynlink/device_functions_dynlink.h ./sdk/shared/inc/dynlink/math_functions_dbl_ptx3_dynlink.h ./sdk/shared/inc/dynlink/math_functions_dynlink285.05.09.run --list|awk '{print $6}' /32/ ./32/libnvidia-glcore.so.285.05.09 ./32/tls/ ./32/tls/libnvidia-tls.so.285.05.09 ./32/libOpenCL.so.1.0.0 ./32/vdpau/ ./32/libvdpau.so.285.05.09 ./32/libvdpau_nvidia.so.285.05.09 ./32/libGL.la ./32/libvdpau_trace.so.285.05.09 ./32/libnvidia-tls.so.285.05.09 ./32/libcuda.so.285.05.09 ./32/libnvidia-ml.so.285.05.09 ./32/libGL.so.285.05.09 ./32/libnvidia-compiler.so.285.05.09 ./libnvidia-glcore.so.285.05.09 ./libnvcuvid.so.285.05.09 ./libXvMCNVIDIA.so.285.05.09 ./gl.h ./libglx.so.285.05.09 ./tls/ ./tls/libnvidia-tls.so.285.05.09 ./NVIDIA_Changelog ./nvidia-debugdump ./makeself.sh ./libOpenCL.so.1.0.0 ./libvdpau.so.285.05.09 ./libvdpau_nvidia.so.285.05.09 ./mkprecompiled ./pkg-history.txt ./LICENSE ./libGL.la ./nvidia-settings ./libvdpau_trace.so.285.05.09 ./nvidia-settings.desktop ./README.txt ./nvidia_drv.so ./glx.h ./nvidia.icd ./nvidia-bug-report.sh ./nvidia-smi.1.gz ./libnvidia-cfg.so.285.05.09 --------------------------------- <snip> --------------------------------- ./kernel/rmil.h ./kernel/xapi-sdk.h ./kernel/os-smp.c ./kernel/nv-vm.c ./kernel/os-agp.c ./kernel/os-usermap.c ./kernel/nv-linux.h ./glxext.h ./libXvMCNVIDIA.a |
Software
CUDA Toolkit
The CUDA Toolkit has all the development tools, libraries, and documentation you need to create applications for the CUDA architecture, including:
CUDA C/C++ Compiler
GPU Debugging & Profiling Tools CUDA-GDB debugger
GPU-Accelerated Math Libraries and Performance Primitives
(GPU-accelerated BLAS library,GPU-accelerated FFT library,GPU-accelerated Sparse Matrix library,GPU-accelerated RNG library)
C/C++ compiler
Visual Profiler
Additional tools and documentation
http://developer.nvidia.com/cuda-toolkit
sh cudatoolkit_4.0.17_linux_64_rhel6.0.run --list
No Format |
---|
sh cudatoolkit_4.0.17_linux_64_rhel6.0.run --list|awk '{print $6}'|sed 's/^./\/usr\/local\/cuda/g'
/usr/local/cuda/
/usr/local/cuda/install-linux.pl
/usr/local/cuda/doc/
/usr/local/cuda/doc/Thrust_Quick_Start_Guide.pdf
/usr/local/cuda/doc/CUSPARSE_Library.pdf
/usr/local/cuda/doc/cuda-memcheck.pdf
/usr/local/cuda/doc/CUBLAS_Library.pdf
/usr/local/cuda/doc/cuobjdump.pdf
/usr/local/cuda/doc/OpenCL_Implementation_Notes.txt
/usr/local/cuda/doc/OpenCL_Jumpstart_Guide.pdf
/usr/local/cuda/doc/CUDA_Toolkit_Reference_Manual.html
/usr/local/cuda/doc/OpenCL_Programming_Overview.pdf
/usr/local/cuda/doc/CUDA_C_Best_Practices_Guide.pdf
/usr/local/cuda/doc/OpenCL_Best_Practices_Guide.pdf
/usr/local/cuda/doc/ptx_isa_2.3.pdf
/usr/local/cuda/doc/CUDA_C_Programming_Guide.pdf
/usr/local/cuda/doc/ptx_isa_1.4.pdf
/usr/local/cuda/doc/CUDA_Toolkit_Reference_Manual.pdf
/usr/local/cuda/doc/Fermi_Tuning_Guide.pdf
/usr/local/cuda/doc/html/
---------------------------------
<snip>
---------------------------------
/usr/local/cuda/computeprof/projects/analysis_boxFilter_Context_0.csv
/usr/local/cuda/computeprof/projects/eigenvalues_eigenvalues_Context_0.csv
/usr/local/cuda/computeprof/projects/analysis_convolutionSeparable_Context_0.csv
/usr/local/cuda/computeprof/projects/MonteCarloMultiGPU_Session1_Context_2.csv
/usr/local/cuda/computeprof/Compute_Visual_Profiler_Release_Notes_Linux.txt
/usr/local/cuda/src/
/usr/local/cuda/src/fortran_thunking.c
/usr/local/cuda/src/icc_math.h.diff
/usr/local/cuda/src/fortran_thunking.h
/usr/local/cuda/src/fortran_common.h
/usr/local/cuda/src/fortran.c
/usr/local/cuda/src/cusparse_fortran.h
/usr/local/cuda/src/cusparse_fortran.c
/usr/local/cuda/src/fortran.h
/usr/local/cuda/src/cusparse_fortran_common.h
|
CUDA SDK - gpucomputingsdk
Installation Directory: /usr/local/cuda/NVIDIA_GPU_Computing_SDK
http://developer.nvidia.com/gpu-computing-sdk
The NVIDIA GPU Computing SDK provides hundreds of code samples, white papers, to help you get started on the path of writing software with CUDA C/C++, OpenCL or DirectCompute.
http://developer.download.nvidia.com/compute/cuda/4_0/sdk/gpucomputingsdk_4.0.17_linux.run
No Format |
---|
sh gpucomputingsdk_4.0.17_linux.run --list|awk '{print $6}' ./sdk/ ./sdk/doc/ ./sdk/doc/release/ ./sdk/doc/release/CUDA_SDK_New_Features_Guide.pdf ./sdk/doc/release/Getting_Started_With_CUDA_SDK_Samples.pdf ./sdk/doc/release/License.pdf ./sdk/doc/GPU_COMPUTING_SDK_Description.rtf ./sdk/doc/CUDA_SDK_Release_Notes.txt ./sdk/doc/OpenCL_Release_Notes.txt ./sdk/shared/ ./sdk/shared/inc/ ./sdk/shared/inc/GL/ ./sdk/shared/inc/GL/freeglut.h ./sdk/shared/inc/dynlinkGL/texture_fetch_functions_dynlinkfreeglut_ext.h ./sdk/shared/inc/GL/exceptionfreeglut_std.h ./sdk/shared/inc/GL/multithreadinggl.h ./sdk/shared/inc/GL/nvGLWidgetsglew.h ./sdk/shared/inc/nvGlutWidgetsGL/glext.h ./sdk/shared/inc/nvMathGL/glu.h ./sdk/shared/inc/GL/nvMatrixglut.h ./sdk/shared/inc/GL/nvQuaternionglxew.h ./sdk/shared/inc/nvShaderUtilsGL/glxext.h ./sdk/shared/inc/GL/nvVectorwglew.h ./sdk/shared/inc/nvWidgetscmd_arg_reader.h ./sdk/shared/inc/rendercheckGL.hdynlink/ ./sdk/shared/inc/shrQATestdynlink/channel_descriptor_dynlink.h ./sdk/shared/inc/shrUtils./dynlink/common_functions_dynlink.h ./sdk/shared/inc/dynlink/cuda_drvapi_dynlink.h ./sdk/shared/inc/stopwatch/dynlink/cuda_runtime_api_dynlink.h ./sdk/shared/inc/stopwatch_basedynlink/cuda_runtime_dynlink.h ./sdk/shared/inc/stopwatch_base.inl/dynlink/cuda_texture_types_dynlink.h ./sdk/shared/inc/dynlink/stopwatchdevice_functions_linuxdynlink.h ./sdk/shared/inc/lib/ --------------------------------- <snip> --------------------------------- ./sdk/OpenCL/src/oclVectorAdd/oclVectorAdd.cppdynlink/math_functions_dbl_ptx3_dynlink.h ./sdk/shared/inc/dynlink/math_functions_dynlink.h ./sdk/OpenCLshared/srcinc/oclVolumeRender/dynlink/texture_fetch_functions_dynlink.h ./sdk/OpenCLshared/src/oclVolumeRender/Makefileinc/exception.h ./sdk/OpenCLshared/src/oclVolumeRender/data/inc/multithreading.h ./sdk/OpenCLshared/src/oclVolumeRender/data/Bucky.rawinc/nvGLWidgets.h ./sdk/OpenCLshared/src/oclVolumeRender/doc/inc/nvGlutWidgets.h ./sdk/OpenCLshared/src/oclVolumeRender/doc/sshot_lg.JPGinc/nvMath.h ./sdk/OpenCLshared/src/oclVolumeRender/doc/sshot_md.jpginc/nvMatrix.h ./sdk/OpenCLshared/src/oclVolumeRender/doc/sshot_sm.JPGinc/nvQuaternion.h ./sdk/OpenCLshared/srcinc/oclVolumeRender/oclVolumeRendernvShaderUtils.cpph ./sdk/OpenCLshared/srcinc/oclVolumeRender/volumeRendernvVector.clh ./sdk/OpenCLshared/src/oclInlinePTX/inc/nvWidgets.h ./sdk/OpenCLshared/src/oclInlinePTX/Makefileinc/rendercheckGL.h ./sdk/OpenCLshared/srcinc/oclInlinePTX/inlinePTXshrQATest.clh ./sdk/OpenCLshared/srcinc/oclInlinePTX/oclInlinePTXshrUtils.cpph ./sdk/OpenCLshared/releaseNotesDatainc/ ./sdk/OpenCL/releaseNotesData/GEF8_2D_wte.gifstopwatch.h ./sdk/OpenCLshared/releaseNotesDatainc/GEF9stopwatch_2D_wtebase.gifh ./sdk/OpenCLshared/releaseNotesDatainc/GEFGTX200stopwatch_2D_wtebase.gifinl ./sdk/OpenCLshared/releaseNotesData/NVSphere.ico ./sdk/OpenCL/releaseNotesData/QUA_FX_4600_White.gifinc/stopwatch_linux.h ./sdk/OpenCLshared/releaseNotesDatalib/link.jpg ./sdk/OpenCL/releaseNotesData/tesla.gif --------------------------------- <snip> --------------------------------- ./sdk/OpenCL/src/oclVectorAdd/oclVectorAdd.cpp ./sdk/OpenCL/src/MakefileoclVolumeRender/ ./sdk/OpenCL/Samples.htmlsrc/oclVolumeRender/Makefile ./sdk/Documentation.html/OpenCL/src/oclVolumeRender/data/ ./sdk/MakefileOpenCL/src/oclVolumeRender/data/Bucky.raw ./sdk/License.txt/OpenCL/src/oclVolumeRender/doc/ ./sdk/cudpp_license.txt |
Installation
No Format |
---|
module load cuda/4.0.17;cd /tmp/tmp2;sh gpucomputingsdk_4.0.17_linux.run
Enter install path (default ~/NVIDIA_GPU_Computing_SDK): /usr/local/cuda/NVIDIA_GPU_Computing_SDK
Located CUDA at /usr/local/cuda
If this is correct, choose the default below.
If it is not correct, enter the correct path to CUDA
Enter CUDA install path (default /usr/local/cuda):
-------------------------
<snip>
-------------------------
========================================
Configuring SDK Makefile (/usr/local/cuda/NVIDIA_GPU_Computing_SDK/C/common/common.mk)...
========================================
* Please make sure your PATH includes /usr/local/cuda/bin
* Please make sure your LD_LIBRARY_PATH includes /usr/local/cuda/lib
* To uninstall the NVIDIA GPU Computing SDK, please delete /usr/local/cuda/NVIDIA_GPU_Computing_SDK
* Installation Complete
Image Install
=============
mount --bind /proc/ /compute/proc/
mount --bind /dev /compute/dev
chroot /compute/
module load cuda/4.0.17
cd /tmp;sh gpucomputingsdk_4.0.17_linux.run
exit
umount /compute/dev
umount /compute/proc
|
Matlab Plug-in for CUDA
Not Installed at this time but can be install on request
http://developer.nvidia.com/cuda-tools-ecosystem
No Format |
---|
N/A
|
CUDA Visual Profiler
This is installed with the CUDA toolkit.
module load cuda/4.0.17
computeprof &
http://developer.nvidia.com/cuda-tools-ecosystem
No Format |
---|
N/A
|
other compilation
Install the following packages before comiling:
freeglut-2.6.0-1.el6.x86_64.rpm libdrm-devel-2.4.23-1.el6.x86_64.rpm mesa-libGL-devel-7.10-1.el6.x86_64.rpm
freeglut-devel-2.6.0-1.el6.x86_64.rpm libXxf86vm-devel-1.1.0-1.el6.x86_64.rpm mesa-libGLU-devel-7.10-1.el6.x86_64.rpm
No Format |
---|
cd /usr/local/cuda/NVIDIA_GPU_Computing_SDK/C
module load cuda/4.0.17
make
(or: make 2>&1 |tee make.output.txt)
Run the sample codes.
module load cuda/4.0.17
cd /usr/local/cuda/NVIDIA_GPU_Computing_SDK/C/bin/linux/release
./deviceQuery
./nbody
|
No Format |
---|
./deviceQuery [deviceQuery] starting... ./deviceQuery Starting... CUDA Device Query (Runtime API) version (CUDART static linking) Found 2 CUDA Capable device(s) Device 0: "Tesla C2070" CUDA Driver Version / Runtime Version /OpenCL/src/oclVolumeRender/doc/sshot_lg.JPG ./sdk/OpenCL/src/oclVolumeRender/doc/sshot_md.jpg ./sdk/OpenCL/src/oclVolumeRender/doc/sshot_sm.JPG ./sdk/OpenCL/src/oclVolumeRender/oclVolumeRender.cpp ./sdk/OpenCL/src/oclVolumeRender/volumeRender.cl ./sdk/OpenCL/src/oclInlinePTX/ ./sdk/OpenCL/src/oclInlinePTX/Makefile ./sdk/OpenCL/src/oclInlinePTX/inlinePTX.cl ./sdk/OpenCL/src/oclInlinePTX/oclInlinePTX.cpp ./sdk/OpenCL/releaseNotesData/ ./sdk/OpenCL/releaseNotesData/GEF8_2D_wte.gif ./sdk/OpenCL/releaseNotesData/GEF9_2D_wte.gif ./sdk/OpenCL/releaseNotesData/GEFGTX200_2D_wte.gif ./sdk/OpenCL/releaseNotesData/NVSphere.ico ./sdk/OpenCL/releaseNotesData/QUA_FX_4600_White.gif ./sdk/OpenCL/releaseNotesData/link.jpg ./sdk/OpenCL/releaseNotesData/tesla.gif ./sdk/OpenCL/Makefile ./sdk/OpenCL/Samples.html ./sdk/Documentation.html ./sdk/Makefile ./sdk/License.txt ./sdk/cudpp_license.txt |
Installation
No Format |
---|
module load cuda/4.0.17;cd /tmp/tmp2;sh gpucomputingsdk_4.0.17_linux.run
Enter install path (default ~/NVIDIA_GPU_Computing_SDK): /usr/local/cuda/NVIDIA_GPU_Computing_SDK
Located CUDA at /usr/local/cuda
If this is correct, choose the default below.
If it is not correct, enter the correct path to CUDA
Enter CUDA install path (default /usr/local/cuda):
-------------------------
<snip>
-------------------------
========================================
Configuring SDK Makefile (/usr/local/cuda/NVIDIA_GPU_Computing_SDK/C/common/common.mk)...
========================================
* Please make sure your PATH includes /usr/local/cuda/bin
* Please make sure your LD_LIBRARY_PATH includes /usr/local/cuda/lib
* To uninstall the NVIDIA GPU Computing SDK, please delete /usr/local/cuda/NVIDIA_GPU_Computing_SDK
* Installation Complete
Image Install
=============
mount --bind /proc/ /compute/proc/
mount --bind /dev /compute/dev
chroot /compute/
module load cuda/4.0.17
cd /tmp;sh gpucomputingsdk_4.0.17_linux.run
exit
umount /compute/dev
umount /compute/proc
|
Matlab Plug-in for CUDA
Not Installed at this time but can be install on request
http://developer.nvidia.com/cuda-tools-ecosystem
No Format |
---|
N/A
|
CUDA Visual Profiler
This is installed with the CUDA toolkit.
module load cuda/4.0.17
computeprof &
http://developer.nvidia.com/cuda-tools-ecosystem
No Format |
---|
N/A
|
other compilation
Install the following packages before comiling:
freeglut-2.6.0-1.el6.x86_64.rpm libdrm-devel-2.4.23-1.el6.x86_64.rpm mesa-libGL-devel-7.10-1.el6.x86_64.rpm
freeglut-devel-2.6.0-1.el6.x86_64.rpm libXxf86vm-devel-1.1.0-1.el6.x86_64.rpm mesa-libGLU-devel-7.10-1.el6.x86_64.rpm
No Format |
---|
cd /usr/local/cuda/NVIDIA_GPU_Computing_SDK/C
module load cuda/4.0.17
make
(or: make 2>&1 |tee make.output.txt)
Run the sample codes.
module load cuda/4.0.17
cd /usr/local/cuda/NVIDIA_GPU_Computing_SDK/C/bin/linux/release
./deviceQuery
./nbody
|
No Format |
---|
./deviceQuery [deviceQuery] starting... ./deviceQuery Starting... CUDA Device Query (Runtime API) version (CUDART static linking) Found 2 CUDA Capable device(s) Device 0: "Tesla C2070" CUDA Driver Version / Runtime Version 4.0 / 4.0 CUDA Capability Major/Minor version number: 2.0 Total amount of global memory: 5375 MBytes (5636554752 bytes) (14) Multiprocessors x (32) CUDA Cores/MP: 448 CUDA Cores GPU Clock Speed: 1.15 GHz Memory Clock rate: 1494.00 Mhz Memory Bus Width: 384-bit L2 Cache Size: 786432 bytes Max Texture Dimension Size (x,y,z) 1D=(65536), 2D=(65536,65535), 3D=(2048,2048,2048) Max Layered Texture Size (dim) x layers 1D=(16384) x 2048, 2D=(16384,16384) x 2048 Total amount of constant memory: 65536 bytes Total amount of shared memory per block: 49152 bytes Total number of registers available per block: 32768 Warp size: 32 Maximum number of threads per block: 1024 Maximum sizes of each dimension of a block: 1024 x 1024 x 64 Maximum sizes of each dimension of a grid: 65535 x 65535 x 65535 Maximum memory pitch: 2147483647 bytes Texture alignment: 512 bytes Concurrent copy and execution: Yes with 2 copy engine(s) Run time limit on kernels: No Integrated GPU sharing Host Memory: No Support host page-locked memory mapping: Yes Concurrent kernel execution: Yes Alignment requirement for Surfaces: Yes Device has ECC support enabled: Yes Device is using TCC driver mode: No Device supports Unified Addressing (UVA): Yes Device PCI Bus ID / PCI location ID: 3 / 0 Compute Mode: < Default (multiple host threads can use ::cudaSetDevice() with device simultaneously) > Device 1: "Tesla C2070" CUDA Driver Version / Runtime Version 4.0 / 4.0 CUDA Capability Major/Minor version number: 2.0 Total amount of global memory: 5375 MBytes (5636554752 bytes) (14) Multiprocessors x (32) CUDA Cores/MP: 448 CUDA Cores GPU Clock Speed: 1.15 GHz Memory Clock rate: 1494.00 Mhz Memory Bus Width: 384-bit L2 Cache Size: 786432 bytes Max Texture Dimension Size (x,y,z) 1D=(65536), 2D=(65536,65535), 3D=(2048,2048,2048) Max Layered Texture Size (dim) x layers 1D=(16384) x 2048, 2D=(16384,16384) x 2048 Total amount of constant memory: 65536 bytes Total amount of shared memory per block: 49152 bytes Total number of registers available per block: 32768 Warp size: 32 Maximum number of threads per block: 1024 Maximum sizes of each dimension of a block: 1024 x 1024 x 64 Maximum sizes of each dimension of a grid: 65535 x 65535 x 65535 Maximum memory pitch: 2147483647 bytes Texture alignment: 512 bytes Concurrent copy and execution: Yes with 2 copy engine(s) Run time limit on kernels: No Integrated GPU sharing Host Memory: No Support host page-locked memory mapping: Yes Concurrent kernel execution: Yes Alignment requirement for Surfaces: Yes Device has ECC support enabled: Yes Device is using TCC driver mode: No Device supports Unified Addressing (UVA): Yes Device PCI Bus ID / PCI location ID: 133 / 0 Compute Mode: < Default (multiple host threads can use ::cudaSetDevice() with device simultaneously) > deviceQuery, CUDA Driver = CUDART, CUDA Driver Version = 4.0, CUDA Runtime Version = 4.0, NumDevs = 2, Device = Tesla C2070, Device = Tesla C2070 [deviceQuery] test results... PASSED Press ENTER to exit... |
Demo
fluidsGL
smokeParticles
particles
postProcessGL
Ref:
1. http://us.download.nvidia.com/XFree86/Linux-x86_64/275.09.07/NVIDIA-Linux-x86_64-275.09.07.run
2. http://www.nvidia.com/Download/index.aspx?lang=en-us
3. http://en.wikipedia.org/wiki/Nvidia_Tesla#Specifications_and_configurations
4. http://en.wikipedia.org/wiki/CUDA#Version_features_and_specifications
5. http://code.google.com/p/stanford-cs193g-sp2010/wiki/TutorialWhenSomethingGoesWrong
notes
No Format |
---|
Install the Devicefollowing supportspackages Unified Addressing (UVA)before compiling: freeglut-2.6.0-1.el6.x86_64.rpm Yes Device PCI Bus ID / PCI location ID: 133 / 0 Compute Mode: < Default (multiple host threads can use ::cudaSetDevice() with device simultaneously) > deviceQuery, CUDA Driver = CUDART, CUDA Driver Version = 4.0, CUDA Runtime Version = 4.0, NumDevs = 2, Device = Tesla C2070, Device = Tesla C2070 [deviceQuery] test results... PASSED Press ENTER to exit... |
Demo
fluidsGL
smokeParticles
particles
postProcessGL
Ref:
1. http://us.download.nvidia.com/XFree86/Linux-x86_64/275.09.07/NVIDIA-Linux-x86_64-275.09.07.run
2. http://www.nvidia.com/Download/index.aspx?lang=en-us
3. http://en.wikipedia.org/wiki/Nvidia_Tesla#Specifications_and_configurations
4. http://en.wikipedia.org/wiki/CUDA#Version_features_and_specifications
5. http://code.google.com/p/stanford-cs193g-sp2010/wiki/TutorialWhenSomethingGoesWrong
notes
No Format |
---|
Install the following packages before compiling:
freeglut-2.6.0-1.el6.x86_64.rpm libdrm-devel-2.4.23-1.el6.x86_64.rpm mesa-libGL-devel-7.10-1.el6.x86_64.rpm
freeglut-devel-2.6.0-1.el6.x86_64.rpm libXxf86vm-devel-1.1.0-1.el6.x86_64.rpm mesa-libGLU-devel-7.10-1.el6.x86_64.rpm
|
notes2
No Format |
---|
ln -s /usr/lib64/libGLU.so.1.3.071000 /usr/lib64/libGLU.so ln -s /usr/lib64/libglut.so.3 /usr/lib64/libglut.so cp -r libdrm-devel-2.4.23-1.el6.x86_64.rpm mesa-libGL-devel-7.10-1.el6.x86_64.rpm freeglut-devel-2.6.0-1.el6.x86_64.rpm libXxf86vm-devel-1.1.0-1.el6.x86_64.rpm mesa-libGLU-devel-7.10-1.el6.x86_64.rpm |
notes2
No Format |
---|
ln -s /usr/lib64/libGLU.so.1.3.071000 /usr/lib64/libGLU.so ln -s /usr/lib64/libglut.so.3 /usr/lib64/libglut.so cp -r /sw/cuda/CUDAToolsSDK/4.0.17/CUPTI/include/GL /sw/cuda/NVIDIA_GPU_Computing_SDK/4.0.17/OpenCL/src/oclVolumeRender cp -r /sw/cuda/CUDAToolsSDK/4.0.17/CUPTI/include/GL /sw/cuda/NVIDIA_GPU_Computing_SDK/4.0.17/OpenCL/src/ cp -r /sw/cuda/CUDAToolsSDK/4.0.17/CUPTI/include/GL /sw/cuda/NVIDIA_GPU_Computing_SDK/4.0.17/OpenCL/common/inc/CL/ ln -s /sw/cuda/CUDAToolsSDK/4.0.17/CUPTI/include/GL /sw/cuda/NVIDIA_GPU_Computing_SDK/4.0.17/OpenCL/src/oclMarchingCubes/GL ln -s /sw/cuda/CUDAToolsSDK/4.0.17/CUPTI/include/GL oclBandwidthTest/GL ln -s /sw/cuda/CUDAToolsSDK/4.0.17/CUPTI/include/GL oclBlackScholes/GL ln -s /sw/cuda/CUDAToolsSDK/4.0.17/CUPTI/include/GL oclBoxFilter/GL ln -s /sw/cuda/CUDAToolsSDK/4.0.17/CUPTI/include/GL oclConvolutionSeparable/GL ln -s /sw/cuda/CUDAToolsSDK/4.0.17/CUPTI/include/GL oclCopyComputeOverlap/GL ln -s /sw/cuda/CUDAToolsSDK/4.0.17/CUPTI/include/GL oclDCT8x8/GL ln -s /sw/cuda/CUDAToolsSDK/4.0.17/CUPTI/include/GL oclDeviceQuery/GL ln -s /sw/cuda/CUDAToolsSDK/4.0.17/CUPTI/include/GL oclDotProduct/GL ln -s /sw/cuda/CUDAToolsSDK/4.0.17/CUPTI/include/GL oclDXTCompression/GL ln -s /sw/cuda/CUDAToolsSDK/4.0.17/CUPTI/include/GL oclFDTD3d/GL ln -s /sw/cuda/CUDAToolsSDK/4.0.17/CUPTI/include/GL oclHiddenMarkovModel/GL ln -s /sw/cuda/NVIDIA_GPU_Computing_SDK/CUDAToolsSDK/4.0.17/OpenCLCUPTI/srcinclude/oclVolumeRenderGL oclHistogram/GL cpln -rs /sw/cuda/CUDAToolsSDK/4.0.17/CUPTI/include/GL oclInlinePTX/GL ln -s /sw/cuda/NVIDIA_GPU_Computing_SDKCUDAToolsSDK/4.0.17/OpenCLCUPTI/srcinclude/GL oclMarchingCubes/GL cpln -rs /sw/cuda/CUDAToolsSDK/4.0.17/CUPTI/include/GL oclMatrixMul/GL ln -s /sw/cuda/NVIDIA_GPU_Computing_SDKCUDAToolsSDK/4.0.17/OpenCLCUPTI/commoninclude/inc/CL/ GL oclMatVecMul/GL ln -s /sw/cuda/CUDAToolsSDK/4.0.17/CUPTI/include/GL oclMedianFilter/GL ln -s /sw/cuda/NVIDIA_GPU_Computing_SDKCUDAToolsSDK/4.0.17/OpenCLCUPTI/src/oclMarchingCubesinclude/GL oclMersenneTwister/GL ln -s /sw/cuda/CUDAToolsSDK/4.0.17/CUPTI/include/GL oclBandwidthTestoclNbody/GL ln -s /sw/cuda/CUDAToolsSDK/4.0.17/CUPTI/include/GL oclBlackScholesoclParticles/GL ln -s /sw/cuda/CUDAToolsSDK/4.0.17/CUPTI/include/GL oclBoxFilteroclPostprocessGL/GL ln -s /sw/cuda/CUDAToolsSDK/4.0.17/CUPTI/include/GL oclConvolutionSeparableoclQuasirandomGenerator/GL ln -s /sw/cuda/CUDAToolsSDK/4.0.17/CUPTI/include/GL oclCopyComputeOverlapoclRadixSort/GL ln -s /sw/cuda/CUDAToolsSDK/4.0.17/CUPTI/include/GL oclDCT8x8oclRecursiveGaussian/GL ln -s /sw/cuda/CUDAToolsSDK/4.0.17/CUPTI/include/GL oclDeviceQueryoclReduction/GL ln -s /sw/cuda/CUDAToolsSDK/4.0.17/CUPTI/include/GL oclDotProductoclScan/GL ln -s /sw/cuda/CUDAToolsSDK/4.0.17/CUPTI/include/GL oclDXTCompressionoclSimpleGL/GL ln -s /sw/cuda/CUDAToolsSDK/4.0.17/CUPTI/include/GL oclFDTD3doclSimpleMultiGPU/GL ln -s /sw/cuda/CUDAToolsSDK/4.0.17/CUPTI/include/GL oclHiddenMarkovModeloclSimpleTexture3D/GL ln -s /sw/cuda/CUDAToolsSDK/4.0.17/CUPTI/include/GL oclHistogramoclSobelFilter/GL ln -s /sw/cuda/CUDAToolsSDK/4.0.17/CUPTI/include/GL oclInlinePTXoclSortingNetworks/GL ln -s /sw/cuda/CUDAToolsSDK/4.0.17/CUPTI/include/GL oclMarchingCubesoclTranspose/GL ln -s /sw/cuda/CUDAToolsSDK/4.0.17/CUPTI/include/GL oclMatrixMuloclTridiagonal/GL ln -s /sw/cuda/CUDAToolsSDK/4.0.17/CUPTI/include/GL oclMatVecMuloclVectorAdd/GL ln -s /sw/cuda/CUDAToolsSDK/4.0.17/CUPTI/include/GL oclMedianFilteroclVolumeRender/GL ln -scd /sw/cuda/CUDAToolsSDK/4.0.17/CUPTI/include/GL oclMersenneTwister/GL ln -s /sw/cuda/CUDAToolsSDK/4.0.17/CUPTI/include/GL oclNbody/GL ln -s /sw/cuda/CUDAToolsSDK/4.0.17/CUPTI/include/GL oclParticles/GL ln -s /sw/cuda/CUDAToolsSDK/4.0.17/CUPTI/include/GL oclPostprocessGL/GL ln -s /sw/cuda/CUDAToolsSDK/4.0.17/CUPTI/include/GL oclQuasirandomGenerator/GL ln -s /sw/cuda/CUDAToolsSDK/4.0.17/CUPTI/include/GL oclRadixSort/GL ln -s /sw/cuda/CUDAToolsSDK/4.0.17/CUPTI/include/GL oclRecursiveGaussian/GL ln -s /sw/cuda/CUDAToolsSDK/4.0.17/CUPTI/include/GL oclReduction/GL ln -s /sw/cuda/CUDAToolsSDK/4.0.17/CUPTI/include/GL oclScan/GL ln -s /sw/cuda/CUDAToolsSDK/4.0.17/CUPTI/include/GL oclSimpleGL/GL ln -s /sw/cuda/CUDAToolsSDK/4.0.17/CUPTI/include/GL oclSimpleMultiGPU/GL ln -s /sw/cuda/CUDAToolsSDK/4.0.17/CUPTI/include/GL oclSimpleTexture3D/GL ln -s /sw/cuda/CUDAToolsSDK/4.0.17/CUPTI/include/GL oclSobelFilter/GL ln -s /sw/cuda/CUDAToolsSDK/4.0.17/CUPTI/include/GL oclSortingNetworks/GL ln -s /sw/cuda/CUDAToolsSDK/4.0.17/CUPTI/include/GL oclTranspose/GL ln -s /sw/cuda/CUDAToolsSDK/4.0.17/CUPTI/include/GL oclTridiagonal/GL ln -s /sw/cuda/CUDAToolsSDK/4.0.17/CUPTI/include/GL oclVectorAdd/GL ln -s /sw/cuda/CUDAToolsSDK/4.0.17/CUPTI/include/GL oclVolumeRender/GL cd /sw/cuda/NVIDIA_GPU_Computing_SDK/4.0.17/OpenCL make |
CuDDN
No Format |
---|
cd /tmp; tar -zxvf cudnn-10.1-linux-x64-v7.6.5.32.tgz cp cuda/include/cudnn.h /usr/local/cuda-10.1/include/ cp cuda/lib64/libcudnn* /usr/local/cuda-10.1/lib64 chmod a+r /usr/local/cuda-10.1/include/cudnn.h /usr/local/cuda-10.1/lib64/libcudnn*NVIDIA_GPU_Computing_SDK/4.0.17/OpenCL make |
CuDDN
No Format |
---|
cudnn-10.0
============
tar -zxvf cudnn-10.0-linux-x64-v7.6.5.32.tgz
cuda/include/cudnn.h
cuda/NVIDIA_SLA_cuDNN_Support.txt
cuda/lib64/libcudnn.so
cuda/lib64/libcudnn.so.7
cuda/lib64/libcudnn.so.7.6.5
cuda/lib64/libcudnn_static.a
cp cuda/include/cudnn.h /usr/local/cuda-10.0/include/
cp cuda/lib64/libcudnn* /usr/local/cuda-10.0/lib64
chmod a+r /usr/local/cuda-10.0/include/cudnn.h /usr/local/cuda-10.0/lib64/libcudnn*
cudnn-10.1
==========
cd /tmp; tar -zxvf cudnn-10.1-linux-x64-v7.6.5.32.tgz
cp cuda/include/cudnn.h /usr/local/cuda-10.1/include/
cp cuda/lib64/libcudnn* /usr/local/cuda-10.1/lib64
chmod a+r /usr/local/cuda-10.1/include/cudnn.h /usr/local/cuda-10.1/lib64/libcudnn*
cudnn-10.2
==========
tar -zxvf cudnn-10.2-linux-x64-v7.6.5.32.tgz
cp cuda/include/cudnn.h /usr/local/cuda-10.2/include/
cp cuda/lib64/libcudnn* /usr/local/cuda-10.2/lib64
chmod a+r /usr/local/cuda-10.2/include/cudnn.h /usr/local/cuda-10.2/lib64/libcudnn* |
Sample pbs script to run on n061 - gpuq2
No Format |
---|
#!/bin/bash
#PBS -m abe
#PBS -M emailaddress@griffith.edu.au
#PBS -N CudaJob
#PBS -q gpuq2
#PBS -l select=1:ncpus=1:mem=2gb:ngpus=1,walltime=01:00:00
cd $PBS_O_WORKDIR
source $HOME/.bashrc
module load anaconda3/2022.10
source activate TorchA100
echo "Starting job"
python isCuda
echo "Done with job"
|