Table of Contents |
---|
...
No Format |
---|
cat sample.pbs.script-dljun to run on queue named dlyao #!/bin/bash -l #PBS -m abe ## Mail to user #PBS -M YourEmail@griffith.edu.au #PBS -V ## Job name #PBS -N JunTest #PBS -q dljun@n060 #####PBS -q dlyao@n060 ####Other options #PBS -q dlyao@n060 or #PBS -q workq@n060 #PBS -W group_list=deeplearning -A deeplearning ###Other options group_list=aspen -A aspen ### Number of nodes:Number of CPUs:Number of threads per node #PBS -l select=1:ncpus=1:ngpus=1:mem=12gb,walltime=100:00:00 #PBS -j oe ### Add current shell environment to job (comment out if not needed) #PBS -V # The job's working directory echo Working directory is $PBS_O_WORKDIR cd $PBS_O_WORKDIR source $HOME/.bashrc module list echo "Starting job" echo Running on host `hostname` echo Time is `date` echo Directory is `pwd` gpustat nvidia-smi echo "Done with job" |
...
No Format |
---|
#!/bin/bash -l #PBS -m abe ## Mail to user #PBS -M YOURNAME@griffith.edu.au #PBS -V ## Job name #PBS -N YaoJobMyName #PBS -q dlyao@n060 ####Other options #PBS -q dlyao@n060 or #PBS -q workq@n060 #PBS -W group_list=aspen -A aspen ##### Other option##s PBS -W group_list=deeplearning -A deeplearning ###Other options group_list=aspen -A aspen ### Number of nodes:Number of CPUs:Number of threads per node #PBS -l select=1:ncpus=1:ngpus=1:mem=12gb,walltime=100:00:00 #PBS -j oe ### Add current shell environment to job (comment out if not needed) #PBS -V # The job's working directory echo Working directory is $PBS_O_WORKDIR cd $PBS_O_WORKDIR source $HOME/.bashrc module list echo "Starting job" echo Running on host `hostname` echo Time is `date` echo Directory is `pwd` gpustat nvidia-smi sleep 100 echo "Done with job" |
...
Hardware: HPE Proliant HPE XL270d Gen 10 Node CTO server,
Intel(R) Xeon(R) Gold 6140 CPU @ 2.30GHz
The OS is Centos 7.6 and the batching system is PBS 18.2
...
No Format |
---|
Qs: Regarding the output, there are some print lines in my code that help me to monitor how my program is working. like the error of model and so on. So is there any way to see this kind of online output on the terminal or log files while the job is being processed by the cluster? Ans: There are a few ways of doing this. 1. You may run an interactive pbs job with "-I" option. For example: qsub -I -q dljun@n060iworkq -W group_list=deeplearning -A deeplearning -l select=1:ncpus=1:ngpus=1:mem=12gb,walltime=100:00:00 After this you will be given a shell and then you can run your command: module load anaconda/5.3.1py3 module load cuda/10.0 source activate tensorflow-gpu python3 /export/home/s5108500/lscratch/Nick/DeepModels/keypoints/baseline_main.py 2. Alternatively, submit the job. Run the script named watch_jobs.sh It will ask for the compute node name and the pbs job number and basically will run this command: tail -f /var/spool/pbs/spool/$JOBNO.n060.* e.g: sh watch_jobs.sh n060: Req'd Req'd Elap Job ID Username Queue Jobname SessID NDS TSK Memory Time S Time --------------- -------- -------- ---------- ------ --- --- ------ ----- - ----- 58.n060 s2594054 dljun IndyTestDL 45304 1 1 12gb 100:0 R 00:11 n060/0 =========================== Please enter Node Number e.g: n060 n060 Please enter Job number e.g 9066 58 =========================== | 5 Tesla V100-PCIE... On | 00000000:89:00.0 Off | 0 | | N/A 33C P0 26W / 250W | 0MiB / 32480MiB | 0% Default | +-------------------------------+----------------------+----------------------+ ? +-----------------------------------------------------------------------------+ | Processes: GPU Memory | | GPU PID Type Process name Usage | |=============================================================================| | No running processes found | +-----------------------------------------------------------------------------+ |
...
No Format |
---|
Check if this returns correctly /usr/local/cuda-10.0/samples/bin/x86_64/linux/release/deviceQuery >>>>>>> /usr/local/cuda-10.0/samples/bin/x86_64/linux/release/deviceQuery Starting... CUDA Device Query (Runtime API) version (CUDART static linking) Detected 6 CUDA Capable device(s) Device 0: "Tesla V100-PCIE-32GB" CUDA Driver Version / Runtime Version 10.0 / 10.0 CUDA Capability Major/Minor version number: 7.0 Total amount of global memory: 32480 MBytes (34058272768 bytes) (80) Multiprocessors, ( 64) CUDA Cores/MP: 5120 CUDA Cores GPU Max Clock rate: 1380 MHz (1.38 GHz) Memory Clock rate: 877 Mhz Memory Bus Width: 4096-bit L2 Cache Size: 6291456 bytes Maximum Texture Dimension Size (x,y,z) 1D=(131072), 2D=(131072, 65536), 3D=(16384, 16384, 16384) Maximum Layered 1D Texture Size, (num) layers 1D=(32768), 2048 layers Maximum Layered 2D Texture Size, (num) layers 2D=(32768, 32768), 2048 layers Total amount of constant memory: 65536 bytes Total amount of shared memory per block: 49152 bytes Total number of registers available per block: 65536 Warp size: 32 Maximum number of threads per multiprocessor: 2048 Maximum number of threads per block: 1024 Max dimension size of a thread block (x,y,z): (1024, 1024, 64) Max dimension size of a grid size (x,y,z): (2147483647, 65535, 65535) Maximum memory pitch: 2147483647 bytes Texture alignment: 512 bytes Concurrent copy and kernel execution: Yes with 7 copy engine(s) Run time limit on kernels: No Integrated GPU sharing Host Memory: No Support host page-locked memory mapping: Yes Alignment requirement for Surfaces: Yes Device has ECC support: Enabled Device supports Unified Addressing (UVA): Yes Device supports Compute Preemption: Yes Supports Cooperative Kernel Launch: Yes Supports MultiDevice Co-op Kernel Launch: Yes Device PCI Domain ID / Bus ID / location ID: 0 / 20 / 0 Compute Mode: < Default (multiple host threads can use ::cudaSetDevice() with device simultaneously) > Device 1: "Tesla V100-PCIE-32GB" CUDA Driver Version / Runtime Version 10.0 / 10.0 CUDA Capability Major/Minor version number: 7.0 Total amount of global memory: 32480 MBytes (34058272768 bytes) (80) Multiprocessors, ( 64) CUDA Cores/MP: 5120 CUDA Cores GPU Max Clock rate: 1380 MHz (1.38 GHz) Memory Clock rate: 877 Mhz Memory Bus Width: 4096-bit L2 Cache Size: 6291456 bytes Maximum Texture Dimension Size (x,y,z) 1D=(131072), 2D=(131072, 65536), 3D=(16384, 16384, 16384) Maximum Layered 1D Texture Size, (num) layers 1D=(32768), 2048 layers Maximum Layered 2D Texture Size, (num) layers 2D=(32768, 32768), 2048 layers Total amount of constant memory: 65536 bytes Total amount of shared memory per block: 49152 bytes Total number of registers available per block: 65536 Warp size: 32 Maximum number of threads per multiprocessor: 2048 Maximum number of threads per block: 1024 Max dimension size of a thread block (x,y,z): (1024, 1024, 64) Max dimension size of a grid size (x,y,z): (2147483647, 65535, 65535) Maximum memory pitch: 2147483647 bytes Texture alignment: 512 bytes Concurrent copy and kernel execution: Yes with 7 copy engine(s) Run time limit on kernels: No Integrated GPU sharing Host Memory: No Support host page-locked memory mapping: Yes Alignment requirement for Surfaces: Yes Device has ECC support: Enabled Device supports Unified Addressing (UVA): Yes Device supports Compute Preemption: Yes Supports Cooperative Kernel Launch: Yes Supports MultiDevice Co-op Kernel Launch: Yes Device PCI Domain ID / Bus ID / location ID: 0 / 21 / 0 Compute Mode: < Default (multiple host threads can use ::cudaSetDevice() with device simultaneously) > Device 2: "Tesla V100-PCIE-32GB" CUDA Driver Version / Runtime Version 10.0 / 10.0 CUDA Capability Major/Minor version number: 7.0 Total amount of global memory: 32480 MBytes (34058272768 bytes) (80) Multiprocessors, ( 64) CUDA Cores/MP: 5120 CUDA Cores GPU Max Clock rate: 1380 MHz (1.38 GHz) Memory Clock rate: 877 Mhz Memory Bus Width: 4096-bit L2 Cache Size: 6291456 bytes Maximum Texture Dimension Size (x,y,z) 1D=(131072), 2D=(131072, 65536), 3D=(16384, 16384, 16384) Maximum Layered 1D Texture Size, (num) layers 1D=(32768), 2048 layers Maximum Layered 2D Texture Size, (num) layers 2D=(32768, 32768), 2048 layers Total amount of constant memory: 65536 bytes Total amount of shared memory per block: 49152 bytes Total number of registers available per block: 65536 Warp size: 32 Maximum number of threads per multiprocessor: 2048 Maximum number of threads per block: 1024 Max dimension size of a thread block (x,y,z): (1024, 1024, 64) Max dimension size of a grid size (x,y,z): (2147483647, 65535, 65535) Maximum memory pitch: 2147483647 bytes Texture alignment: 512 bytes Concurrent copy and kernel execution: Yes with 7 copy engine(s) Run time limit on kernels: No Integrated GPU sharing Host Memory: No Support host page-locked memory mapping: Yes Alignment requirement for Surfaces: Yes Device has ECC support: Enabled Device supports Unified Addressing (UVA): Yes Device supports Compute Preemption: Yes Supports Cooperative Kernel Launch: Yes Supports MultiDevice Co-op Kernel Launch: Yes Device PCI Domain ID / Bus ID / location ID: 0 / 57 / 0 Compute Mode: < Default (multiple host threads can use ::cudaSetDevice() with device simultaneously) > Device 3: "Tesla V100-PCIE-32GB" CUDA Driver Version / Runtime Version 10.0 / 10.0 CUDA Capability Major/Minor version number: 7.0 Total amount of global memory: 32480 MBytes (34058272768 bytes) (80) Multiprocessors, ( 64) CUDA Cores/MP: 5120 CUDA Cores GPU Max Clock rate: 1380 MHz (1.38 GHz) Memory Clock rate: 877 Mhz Memory Bus Width: 4096-bit L2 Cache Size: 6291456 bytes Maximum Texture Dimension Size (x,y,z) 1D=(131072), 2D=(131072, 65536), 3D=(16384, 16384, 16384) Maximum Layered 1D Texture Size, (num) layers 1D=(32768), 2048 layers Maximum Layered 2D Texture Size, (num) layers 2D=(32768, 32768), 2048 layers Total amount of constant memory: 65536 bytes Total amount of shared memory per block: 49152 bytes Total number of registers available per block: 65536 Warp size: 32 Maximum number of threads per multiprocessor: 2048 Maximum number of threads per block: 1024 Max dimension size of a thread block (x,y,z): (1024, 1024, 64) Max dimension size of a grid size (x,y,z): (2147483647, 65535, 65535) Maximum memory pitch: 2147483647 bytes Texture alignment: 512 bytes Concurrent copy and kernel execution: Yes with 7 copy engine(s) Run time limit on kernels: No Integrated GPU sharing Host Memory: No Support host page-locked memory mapping: Yes Alignment requirement for Surfaces: Yes Device has ECC support: Enabled Device supports Unified Addressing (UVA): Yes Device supports Compute Preemption: Yes Supports Cooperative Kernel Launch: Yes Supports MultiDevice Co-op Kernel Launch: Yes Device PCI Domain ID / Bus ID / location ID: 0 / 58 / 0 Compute Mode: < Default (multiple host threads can use ::cudaSetDevice() with device simultaneously) > Device 4: "Tesla V100-PCIE-32GB" CUDA Driver Version / Runtime Version 10.0 / 10.0 CUDA Capability Major/Minor version number: 7.0 Total amount of global memory: 32480 MBytes (34058272768 bytes) (80) Multiprocessors, ( 64) CUDA Cores/MP: 5120 CUDA Cores GPU Max Clock rate: 1380 MHz (1.38 GHz) Memory Clock rate: 877 Mhz Memory Bus Width: 4096-bit L2 Cache Size: 6291456 bytes Maximum Texture Dimension Size (x,y,z) 1D=(131072), 2D=(131072, 65536), 3D=(16384, 16384, 16384) Maximum Layered 1D Texture Size, (num) layers 1D=(32768), 2048 layers Maximum Layered 2D Texture Size, (num) layers 2D=(32768, 32768), 2048 layers Total amount of constant memory: 65536 bytes Total amount of shared memory per block: 49152 bytes Total number of registers available per block: 65536 Warp size: 32 Maximum number of threads per multiprocessor: 2048 Maximum number of threads per block: 1024 Max dimension size of a thread block (x,y,z): (1024, 1024, 64) Max dimension size of a grid size (x,y,z): (2147483647, 65535, 65535) Maximum memory pitch: 2147483647 bytes Texture alignment: 512 bytes Concurrent copy and kernel execution: Yes with 7 copy engine(s) Run time limit on kernels: No Integrated GPU sharing Host Memory: No Support host page-locked memory mapping: Yes Alignment requirement for Surfaces: Yes Device has ECC support: Enabled Device supports Unified Addressing (UVA): Yes Device supports Compute Preemption: Yes Supports Cooperative Kernel Launch: Yes Supports MultiDevice Co-op Kernel Launch: Yes Device PCI Domain ID / Bus ID / location ID: 0 / 136 / 0 Compute Mode: < Default (multiple host threads can use ::cudaSetDevice() with device simultaneously) > Device 5: "Tesla V100-PCIE-32GB" CUDA Driver Version / Runtime Version 10.0 / 10.0 CUDA Capability Major/Minor version number: 7.0 Total amount of global memory: 32480 MBytes (34058272768 bytes) (80) Multiprocessors, ( 64) CUDA Cores/MP: 5120 CUDA Cores GPU Max Clock rate: 1380 MHz (1.38 GHz) Memory Clock rate: 877 Mhz Memory Bus Width: 4096-bit L2 Cache Size: 6291456 bytes Maximum Texture Dimension Size (x,y,z) 1D=(131072), 2D=(131072, 65536), 3D=(16384, 16384, 16384) Maximum Layered 1D Texture Size, (num) layers 1D=(32768), 2048 layers Maximum Layered 2D Texture Size, (num) layers 2D=(32768, 32768), 2048 layers Total amount of constant memory: 65536 bytes Total amount of shared memory per block: 49152 bytes Total number of registers available per block: 65536 Warp size: 32 Maximum number of threads per multiprocessor: 2048 Maximum number of threads per block: 1024 Max dimension size of a thread block (x,y,z): (1024, 1024, 64) Max dimension size of a grid size (x,y,z): (2147483647, 65535, 65535) Maximum memory pitch: 2147483647 bytes Texture alignment: 512 bytes Concurrent copy and kernel execution: Yes with 7 copy engine(s) Run time limit on kernels: No Integrated GPU sharing Host Memory: No Support host page-locked memory mapping: Yes Alignment requirement for Surfaces: Yes Device has ECC support: Enabled Device supports Unified Addressing (UVA): Yes Device supports Compute Preemption: Yes Supports Cooperative Kernel Launch: Yes Supports MultiDevice Co-op Kernel Launch: Yes Device PCI Domain ID / Bus ID / location ID: 0 / 137 / 0 Compute Mode: < Default (multiple host threads can use ::cudaSetDevice() with device simultaneously) > > Peer access from Tesla V100-PCIE-32GB (GPU0) -> Tesla V100-PCIE-32GB (GPU1) : Yes > Peer access from Tesla V100-PCIE-32GB (GPU0) -> Tesla V100-PCIE-32GB (GPU2) : Yes > Peer access from Tesla V100-PCIE-32GB (GPU0) -> Tesla V100-PCIE-32GB (GPU3) : Yes > Peer access from Tesla V100-PCIE-32GB (GPU0) -> Tesla V100-PCIE-32GB (GPU4) : Yes > Peer access from Tesla V100-PCIE-32GB (GPU0) -> Tesla V100-PCIE-32GB (GPU5) : Yes > Peer access from Tesla V100-PCIE-32GB (GPU1) -> Tesla V100-PCIE-32GB (GPU0) : Yes > Peer access from Tesla V100-PCIE-32GB (GPU1) -> Tesla V100-PCIE-32GB (GPU2) : Yes > Peer access from Tesla V100-PCIE-32GB (GPU1) -> Tesla V100-PCIE-32GB (GPU3) : Yes > Peer access from Tesla V100-PCIE-32GB (GPU1) -> Tesla V100-PCIE-32GB (GPU4) : Yes > Peer access from Tesla V100-PCIE-32GB (GPU1) -> Tesla V100-PCIE-32GB (GPU5) : Yes > Peer access from Tesla V100-PCIE-32GB (GPU2) -> Tesla V100-PCIE-32GB (GPU0) : Yes > Peer access from Tesla V100-PCIE-32GB (GPU2) -> Tesla V100-PCIE-32GB (GPU1) : Yes > Peer access from Tesla V100-PCIE-32GB (GPU2) -> Tesla V100-PCIE-32GB (GPU3) : Yes > Peer access from Tesla V100-PCIE-32GB (GPU2) -> Tesla V100-PCIE-32GB (GPU4) : Yes > Peer access from Tesla V100-PCIE-32GB (GPU2) -> Tesla V100-PCIE-32GB (GPU5) : Yes > Peer access from Tesla V100-PCIE-32GB (GPU3) -> Tesla V100-PCIE-32GB (GPU0) : Yes > Peer access from Tesla V100-PCIE-32GB (GPU3) -> Tesla V100-PCIE-32GB (GPU1) : Yes > Peer access from Tesla V100-PCIE-32GB (GPU3) -> Tesla V100-PCIE-32GB (GPU2) : Yes > Peer access from Tesla V100-PCIE-32GB (GPU3) -> Tesla V100-PCIE-32GB (GPU4) : Yes > Peer access from Tesla V100-PCIE-32GB (GPU3) -> Tesla V100-PCIE-32GB (GPU5) : Yes > Peer access from Tesla V100-PCIE-32GB (GPU4) -> Tesla V100-PCIE-32GB (GPU0) : Yes > Peer access from Tesla V100-PCIE-32GB (GPU4) -> Tesla V100-PCIE-32GB (GPU1) : Yes > Peer access from Tesla V100-PCIE-32GB (GPU4) -> Tesla V100-PCIE-32GB (GPU2) : Yes > Peer access from Tesla V100-PCIE-32GB (GPU4) -> Tesla V100-PCIE-32GB (GPU3) : Yes > Peer access from Tesla V100-PCIE-32GB (GPU4) -> Tesla V100-PCIE-32GB (GPU5) : Yes > Peer access from Tesla V100-PCIE-32GB (GPU5) -> Tesla V100-PCIE-32GB (GPU0) : Yes > Peer access from Tesla V100-PCIE-32GB (GPU5) -> Tesla V100-PCIE-32GB (GPU1) : Yes > Peer access from Tesla V100-PCIE-32GB (GPU5) -> Tesla V100-PCIE-32GB (GPU2) : Yes > Peer access from Tesla V100-PCIE-32GB (GPU5) -> Tesla V100-PCIE-32GB (GPU3) : Yes > Peer access from Tesla V100-PCIE-32GB (GPU5) -> Tesla V100-PCIE-32GB (GPU4) : Yes deviceQuery, CUDA Driver = CUDART, CUDA Driver Version = 10.0, CUDA Runtime Version = 10.0, NumDevs = 6 Result = PASS >>>>>>>> |
gpu issues - Sample torch.device.py
No Format |
---|
more log_device_placement.py ####https://www.tensorflow.org/guide/using_gpu import tensorflow as tf # Creates a graph. a = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[2, 3], name='a') b = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[3, 2], name='b') c = tf.matmul(a, b) # Creates a session with log_device_placement set to True. sess = tf.Session(config=tf.ConfigProto(log_device_placement=True)) # Runs the op. print(sess.run(c)) |
...
No Format |
---|
Here is sample pbs scripts Sample PBS script: ================== cat pbs.tensor.01 #!/bin/bash #PBS -m abe #PBS -M Youremail@griffith.edu.au #PBS -V #PBS -N testImage #PBS -q dljun@n060 #PBS -W group_list=deeplearning -A deeplearning #PBS -l select=1:ncpus=1:ngpus=1:mem=32gb,walltime=300:00:00 #PBS -j oe module load anaconda/5.3.1py3 #conda info --envs #source activate deeplearning source activate tensorflow-gpu ##nvidia-debugdump -l ##nvidia-smi ###python main.py --cfg cfg/config3.yml --gpu 0 cd $PBS_O_WORKDIR python /export/home/s12345/lpbs/cuda/tensorflowTutorial.py |
...
No Format |
---|
cat pbs.01
>>>>>>>>>>>>>>>>>>>
#!/bin/bash
#PBS -m abe
#PBS -M myemail@griffith.edu.au
#PBS -V
#PBS -N verc235
#PBS -q dljun@n060
#PBS -W group_list=deeplearning -A deeplearning
#PBS -l select=1:ncpus=16:ngpus=1:mem=32gb,walltime=300:00:00
#PBS -j oe
#cd $PBS_O_WORKDIR
GPUNUM=`echo $CUDA_VISIBLE_DEVICES`
module load anaconda/5.3.1py3
module load cuda/10.0
#conda info --envs
#source activate deeplearning
source activate tensorflow-gpu
##nvidia-debugdump -l
##nvidia-smi
GPUNUM=`echo $CUDA_VISIBLE_DEVICES`
MASTERDIR=/export/home/s1234/scratch/home/DeepXi/ver/c2/5
cd $MASTERDIR/5
python3 deepxi.py --train 1 --gpu $GPUNUM &
cd $MASTERDIR/10
python3 deepxi.py --train 1 --gpu $GPUNUM &
cd $MASTERDIR/15
python3 deepxi.py --train 1 --gpu $GPUNUM &
cd $MASTERDIR/20
python3 deepxi.py --train 1 --gpu $GPUNUM
>>>>>>>>
Submit the job like this:
qsub pbs.01 |
...