Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.

Table of Contents

...

No Format
cat sample.pbs.script-dljun to run on queue named dlyao

#!/bin/bash -l
#PBS -m abe
## Mail to user
#PBS -M YourEmail@griffith.edu.au
#PBS -V
## Job name
#PBS -N  JunTest
#PBS -q dljun@n060
#####PBS -q dlyao@n060
####Other options #PBS -q dlyao@n060 or #PBS -q workq@n060
#PBS -W group_list=deeplearning -A deeplearning
###Other options group_list=aspen -A aspen
### Number of nodes:Number of CPUs:Number of threads per node
#PBS -l select=1:ncpus=1:ngpus=1:mem=12gb,walltime=100:00:00
#PBS -j oe
### Add current shell environment to job (comment out if not needed)
#PBS -V
# The job's working directory
echo Working directory is $PBS_O_WORKDIR
cd $PBS_O_WORKDIR
source $HOME/.bashrc
module list
echo "Starting job"
echo Running on host `hostname`
echo Time is `date`
echo Directory is `pwd`
gpustat
nvidia-smi
echo "Done with job"

...

No Format
#!/bin/bash -l
#PBS -m abe
## Mail to user
#PBS -M YOURNAME@griffith.edu.au
#PBS -V
## Job name
#PBS -N  YaoJobMyName
#PBS -q dlyao@n060
####Other options #PBS -q dlyao@n060 or #PBS -q workq@n060
#PBS -W group_list=aspen -A aspen
##### Other option##s PBS -W group_list=deeplearning -A deeplearning
###Other options group_list=aspen -A aspen
### Number of nodes:Number of CPUs:Number of threads per node
#PBS -l select=1:ncpus=1:ngpus=1:mem=12gb,walltime=100:00:00
#PBS
-j oe
### Add current shell environment to job (comment out if not needed)
#PBS
-V
# The job's working directory
echo Working directory is $PBS_O_WORKDIR
cd $PBS_O_WORKDIR
source $HOME/.bashrc
module list
echo "Starting job"
echo Running on host `hostname`
echo Time is `date`
echo Directory is `pwd`
gpustat
nvidia-smi
sleep 100
echo "Done with job"

...

Hardware: HPE Proliant HPE XL270d Gen 10 Node CTO server

Intel(R) Xeon(R) Gold 6140 CPU @ 2.30GHz

The OS is Centos 7.6 and the batching system is PBS 18.2

...

No Format
Qs: Regarding the output, there are some print lines in my code that help me to monitor how my program is working. like the error of model and so
on.  So is there any way to see this kind of online output on the terminal or log files while the job is being processed by the cluster?

Ans: There are a few ways of doing this. 
1. You may run an interactive pbs job with "-I" option. 
For example: qsub -I -q dljun@n060iworkq -W group_list=deeplearning -A deeplearning -l select=1:ncpus=1:ngpus=1:mem=12gb,walltime=100:00:00 
After this you will be given a shell and then you can run your command: 
module load anaconda/5.3.1py3
module load cuda/10.0
source activate tensorflow-gpu
python3 /export/home/s5108500/lscratch/Nick/DeepModels/keypoints/baseline_main.py

2. Alternatively, submit the job. Run the script named watch_jobs.sh
It will ask for the compute node name and the pbs job number and basically will run this command:
tail -f /var/spool/pbs/spool/$JOBNO.n060.*

e.g:
sh watch_jobs.sh

n060:
                                                            Req'd  Req'd   Elap
Job ID          Username Queue    Jobname    SessID NDS TSK Memory Time  S Time
--------------- -------- -------- ---------- ------ --- --- ------ ----- - -----
58.n060         s2594054 dljun    IndyTestDL  45304   1   1   12gb 100:0 R 00:11 n060/0
===========================
Please enter Node Number e.g: n060
n060
Please enter Job number  e.g 9066
58
===========================

|   5  Tesla V100-PCIE...  On   | 00000000:89:00.0 Off |                    0 |
| N/A   33C    P0    26W / 250W |      0MiB / 32480MiB |      0%      Default |
+-------------------------------+----------------------+----------------------+

?

+-----------------------------------------------------------------------------+
| Processes:                                                       GPU Memory |
|  GPU       PID   Type   Process name                             Usage      |
|=============================================================================|
|  No running processes found                                                 |
+-----------------------------------------------------------------------------+

...

No Format
Check if this returns correctly
 
 /usr/local/cuda-10.0/samples/bin/x86_64/linux/release/deviceQuery
 
>>>>>>>
/usr/local/cuda-10.0/samples/bin/x86_64/linux/release/deviceQuery Starting...
 CUDA Device Query (Runtime API) version (CUDART static linking)
Detected 6 CUDA Capable device(s)
Device 0: "Tesla V100-PCIE-32GB"
  CUDA Driver Version / Runtime Version          10.0 / 10.0
  CUDA Capability Major/Minor version number:    7.0
  Total amount of global memory:                 32480 MBytes (34058272768 bytes)
  (80) Multiprocessors, ( 64) CUDA Cores/MP:     5120 CUDA Cores
  GPU Max Clock rate:                            1380 MHz (1.38 GHz)
  Memory Clock rate:                             877 Mhz
  Memory Bus Width:                              4096-bit
  L2 Cache Size:                                 6291456 bytes
  Maximum Texture Dimension Size (x,y,z)         1D=(131072), 2D=(131072, 65536), 3D=(16384, 16384, 16384)
  Maximum Layered 1D Texture Size, (num) layers  1D=(32768), 2048 layers
  Maximum Layered 2D Texture Size, (num) layers  2D=(32768, 32768), 2048 layers
  Total amount of constant memory:               65536 bytes
  Total amount of shared memory per block:       49152 bytes
  Total number of registers available per block: 65536
  Warp size:                                     32
  Maximum number of threads per multiprocessor:  2048
  Maximum number of threads per block:           1024
  Max dimension size of a thread block (x,y,z): (1024, 1024, 64)
  Max dimension size of a grid size    (x,y,z): (2147483647, 65535, 65535)
  Maximum memory pitch:                          2147483647 bytes
  Texture alignment:                             512 bytes
  Concurrent copy and kernel execution:          Yes with 7 copy engine(s)
  Run time limit on kernels:                     No
  Integrated GPU sharing Host Memory:            No
  Support host page-locked memory mapping:       Yes
  Alignment requirement for Surfaces:            Yes
  Device has ECC support:                        Enabled
  Device supports Unified Addressing (UVA):      Yes
  Device supports Compute Preemption:            Yes
  Supports Cooperative Kernel Launch:            Yes
  Supports MultiDevice Co-op Kernel Launch:      Yes
  Device PCI Domain ID / Bus ID / location ID:   0 / 20 / 0
  Compute Mode:
     < Default (multiple host threads can use ::cudaSetDevice() with device simultaneously) >
Device 1: "Tesla V100-PCIE-32GB"
  CUDA Driver Version / Runtime Version          10.0 / 10.0
  CUDA Capability Major/Minor version number:    7.0
  Total amount of global memory:                 32480 MBytes (34058272768 bytes)
  (80) Multiprocessors, ( 64) CUDA Cores/MP:     5120 CUDA Cores
  GPU Max Clock rate:                            1380 MHz (1.38 GHz)
  Memory Clock rate:                             877 Mhz
  Memory Bus Width:                              4096-bit
  L2 Cache Size:                                 6291456 bytes
  Maximum Texture Dimension Size (x,y,z)         1D=(131072), 2D=(131072, 65536), 3D=(16384, 16384, 16384)
  Maximum Layered 1D Texture Size, (num) layers  1D=(32768), 2048 layers
  Maximum Layered 2D Texture Size, (num) layers  2D=(32768, 32768), 2048 layers
  Total amount of constant memory:               65536 bytes
  Total amount of shared memory per block:       49152 bytes
  Total number of registers available per block: 65536
  Warp size:                                     32
  Maximum number of threads per multiprocessor:  2048
  Maximum number of threads per block:           1024
  Max dimension size of a thread block (x,y,z): (1024, 1024, 64)
  Max dimension size of a grid size    (x,y,z): (2147483647, 65535, 65535)
  Maximum memory pitch:                          2147483647 bytes
  Texture alignment:                             512 bytes
  Concurrent copy and kernel execution:          Yes with 7 copy engine(s)
  Run time limit on kernels:                     No
  Integrated GPU sharing Host Memory:            No
  Support host page-locked memory mapping:       Yes
  Alignment requirement for Surfaces:            Yes
  Device has ECC support:                        Enabled
  Device supports Unified Addressing (UVA):      Yes
  Device supports Compute Preemption:            Yes
  Supports Cooperative Kernel Launch:            Yes
  Supports MultiDevice Co-op Kernel Launch:      Yes
  Device PCI Domain ID / Bus ID / location ID:   0 / 21 / 0
  Compute Mode:
     < Default (multiple host threads can use ::cudaSetDevice() with device simultaneously) >
Device 2: "Tesla V100-PCIE-32GB"
  CUDA Driver Version / Runtime Version          10.0 / 10.0
  CUDA Capability Major/Minor version number:    7.0
  Total amount of global memory:                 32480 MBytes (34058272768 bytes)
  (80) Multiprocessors, ( 64) CUDA Cores/MP:     5120 CUDA Cores
  GPU Max Clock rate:                            1380 MHz (1.38 GHz)
  Memory Clock rate:                             877 Mhz
  Memory Bus Width:                              4096-bit
  L2 Cache Size:                                 6291456 bytes
  Maximum Texture Dimension Size (x,y,z)         1D=(131072), 2D=(131072, 65536), 3D=(16384, 16384, 16384)
  Maximum Layered 1D Texture Size, (num) layers  1D=(32768), 2048 layers
  Maximum Layered 2D Texture Size, (num) layers  2D=(32768, 32768), 2048 layers
  Total amount of constant memory:               65536 bytes
  Total amount of shared memory per block:       49152 bytes
  Total number of registers available per block: 65536
  Warp size:                                     32
  Maximum number of threads per multiprocessor:  2048
  Maximum number of threads per block:           1024
  Max dimension size of a thread block (x,y,z): (1024, 1024, 64)
  Max dimension size of a grid size    (x,y,z): (2147483647, 65535, 65535)
  Maximum memory pitch:                          2147483647 bytes
  Texture alignment:                             512 bytes
  Concurrent copy and kernel execution:          Yes with 7 copy engine(s)
  Run time limit on kernels:                     No
  Integrated GPU sharing Host Memory:            No
  Support host page-locked memory mapping:       Yes
  Alignment requirement for Surfaces:            Yes
  Device has ECC support:                        Enabled
  Device supports Unified Addressing (UVA):      Yes
  Device supports Compute Preemption:            Yes
  Supports Cooperative Kernel Launch:            Yes
  Supports MultiDevice Co-op Kernel Launch:      Yes
  Device PCI Domain ID / Bus ID / location ID:   0 / 57 / 0
  Compute Mode:
     < Default (multiple host threads can use ::cudaSetDevice() with device simultaneously) >
Device 3: "Tesla V100-PCIE-32GB"
  CUDA Driver Version / Runtime Version          10.0 / 10.0
  CUDA Capability Major/Minor version number:    7.0
  Total amount of global memory:                 32480 MBytes (34058272768 bytes)
  (80) Multiprocessors, ( 64) CUDA Cores/MP:     5120 CUDA Cores
  GPU Max Clock rate:                            1380 MHz (1.38 GHz)
  Memory Clock rate:                             877 Mhz
  Memory Bus Width:                              4096-bit
  L2 Cache Size:                                 6291456 bytes
  Maximum Texture Dimension Size (x,y,z)         1D=(131072), 2D=(131072, 65536), 3D=(16384, 16384, 16384)
  Maximum Layered 1D Texture Size, (num) layers  1D=(32768), 2048 layers
  Maximum Layered 2D Texture Size, (num) layers  2D=(32768, 32768), 2048 layers
  Total amount of constant memory:               65536 bytes
  Total amount of shared memory per block:       49152 bytes
  Total number of registers available per block: 65536
  Warp size:                                     32
  Maximum number of threads per multiprocessor:  2048
  Maximum number of threads per block:           1024
  Max dimension size of a thread block (x,y,z): (1024, 1024, 64)
  Max dimension size of a grid size    (x,y,z): (2147483647, 65535, 65535)
  Maximum memory pitch:                          2147483647 bytes
  Texture alignment:                             512 bytes
  Concurrent copy and kernel execution:          Yes with 7 copy engine(s)
  Run time limit on kernels:                     No
  Integrated GPU sharing Host Memory:            No
  Support host page-locked memory mapping:       Yes
  Alignment requirement for Surfaces:            Yes
  Device has ECC support:                        Enabled
  Device supports Unified Addressing (UVA):      Yes
  Device supports Compute Preemption:            Yes
  Supports Cooperative Kernel Launch:            Yes
  Supports MultiDevice Co-op Kernel Launch:      Yes
  Device PCI Domain ID / Bus ID / location ID:   0 / 58 / 0
  Compute Mode:
     < Default (multiple host threads can use ::cudaSetDevice() with device simultaneously) >
Device 4: "Tesla V100-PCIE-32GB"
  CUDA Driver Version / Runtime Version          10.0 / 10.0
  CUDA Capability Major/Minor version number:    7.0
  Total amount of global memory:                 32480 MBytes (34058272768 bytes)
  (80) Multiprocessors, ( 64) CUDA Cores/MP:     5120 CUDA Cores
  GPU Max Clock rate:                            1380 MHz (1.38 GHz)
  Memory Clock rate:                             877 Mhz
  Memory Bus Width:                              4096-bit
  L2 Cache Size:                                 6291456 bytes
  Maximum Texture Dimension Size (x,y,z)         1D=(131072), 2D=(131072, 65536), 3D=(16384, 16384, 16384)
  Maximum Layered 1D Texture Size, (num) layers  1D=(32768), 2048 layers
  Maximum Layered 2D Texture Size, (num) layers  2D=(32768, 32768), 2048 layers
  Total amount of constant memory:               65536 bytes
  Total amount of shared memory per block:       49152 bytes
  Total number of registers available per block: 65536
  Warp size:                                     32
  Maximum number of threads per multiprocessor:  2048
  Maximum number of threads per block:           1024
  Max dimension size of a thread block (x,y,z): (1024, 1024, 64)
  Max dimension size of a grid size    (x,y,z): (2147483647, 65535, 65535)
  Maximum memory pitch:                          2147483647 bytes
  Texture alignment:                             512 bytes
  Concurrent copy and kernel execution:          Yes with 7 copy engine(s)
  Run time limit on kernels:                     No
  Integrated GPU sharing Host Memory:            No
  Support host page-locked memory mapping:       Yes
  Alignment requirement for Surfaces:            Yes
  Device has ECC support:                        Enabled
  Device supports Unified Addressing (UVA):      Yes
  Device supports Compute Preemption:            Yes
  Supports Cooperative Kernel Launch:            Yes
  Supports MultiDevice Co-op Kernel Launch:      Yes
  Device PCI Domain ID / Bus ID / location ID:   0 / 136 / 0
  Compute Mode:
     < Default (multiple host threads can use ::cudaSetDevice() with device simultaneously) >
Device 5: "Tesla V100-PCIE-32GB"
  CUDA Driver Version / Runtime Version          10.0 / 10.0
  CUDA Capability Major/Minor version number:    7.0
  Total amount of global memory:                 32480 MBytes (34058272768 bytes)
  (80) Multiprocessors, ( 64) CUDA Cores/MP:     5120 CUDA Cores
  GPU Max Clock rate:                            1380 MHz (1.38 GHz)
  Memory Clock rate:                             877 Mhz
  Memory Bus Width:                              4096-bit
  L2 Cache Size:                                 6291456 bytes
  Maximum Texture Dimension Size (x,y,z)         1D=(131072), 2D=(131072, 65536), 3D=(16384, 16384, 16384)
  Maximum Layered 1D Texture Size, (num) layers  1D=(32768), 2048 layers
  Maximum Layered 2D Texture Size, (num) layers  2D=(32768, 32768), 2048 layers
  Total amount of constant memory:               65536 bytes
  Total amount of shared memory per block:       49152 bytes
  Total number of registers available per block: 65536
  Warp size:                                     32
  Maximum number of threads per multiprocessor:  2048
  Maximum number of threads per block:           1024
  Max dimension size of a thread block (x,y,z): (1024, 1024, 64)
  Max dimension size of a grid size    (x,y,z): (2147483647, 65535, 65535)
  Maximum memory pitch:                          2147483647 bytes
  Texture alignment:                             512 bytes
  Concurrent copy and kernel execution:          Yes with 7 copy engine(s)
  Run time limit on kernels:                     No
  Integrated GPU sharing Host Memory:            No
  Support host page-locked memory mapping:       Yes
  Alignment requirement for Surfaces:            Yes
  Device has ECC support:                        Enabled
  Device supports Unified Addressing (UVA):      Yes
  Device supports Compute Preemption:            Yes
  Supports Cooperative Kernel Launch:            Yes
  Supports MultiDevice Co-op Kernel Launch:      Yes
  Device PCI Domain ID / Bus ID / location ID:   0 / 137 / 0
  Compute Mode:
     < Default (multiple host threads can use ::cudaSetDevice() with device simultaneously) >
> Peer access from Tesla V100-PCIE-32GB (GPU0) -> Tesla V100-PCIE-32GB (GPU1) : Yes
> Peer access from Tesla V100-PCIE-32GB (GPU0) -> Tesla V100-PCIE-32GB (GPU2) : Yes
> Peer access from Tesla V100-PCIE-32GB (GPU0) -> Tesla V100-PCIE-32GB (GPU3) : Yes
> Peer access from Tesla V100-PCIE-32GB (GPU0) -> Tesla V100-PCIE-32GB (GPU4) : Yes
> Peer access from Tesla V100-PCIE-32GB (GPU0) -> Tesla V100-PCIE-32GB (GPU5) : Yes
> Peer access from Tesla V100-PCIE-32GB (GPU1) -> Tesla V100-PCIE-32GB (GPU0) : Yes
> Peer access from Tesla V100-PCIE-32GB (GPU1) -> Tesla V100-PCIE-32GB (GPU2) : Yes
> Peer access from Tesla V100-PCIE-32GB (GPU1) -> Tesla V100-PCIE-32GB (GPU3) : Yes
> Peer access from Tesla V100-PCIE-32GB (GPU1) -> Tesla V100-PCIE-32GB (GPU4) : Yes
> Peer access from Tesla V100-PCIE-32GB (GPU1) -> Tesla V100-PCIE-32GB (GPU5) : Yes
> Peer access from Tesla V100-PCIE-32GB (GPU2) -> Tesla V100-PCIE-32GB (GPU0) : Yes
> Peer access from Tesla V100-PCIE-32GB (GPU2) -> Tesla V100-PCIE-32GB (GPU1) : Yes
> Peer access from Tesla V100-PCIE-32GB (GPU2) -> Tesla V100-PCIE-32GB (GPU3) : Yes
> Peer access from Tesla V100-PCIE-32GB (GPU2) -> Tesla V100-PCIE-32GB (GPU4) : Yes
> Peer access from Tesla V100-PCIE-32GB (GPU2) -> Tesla V100-PCIE-32GB (GPU5) : Yes
> Peer access from Tesla V100-PCIE-32GB (GPU3) -> Tesla V100-PCIE-32GB (GPU0) : Yes
> Peer access from Tesla V100-PCIE-32GB (GPU3) -> Tesla V100-PCIE-32GB (GPU1) : Yes
> Peer access from Tesla V100-PCIE-32GB (GPU3) -> Tesla V100-PCIE-32GB (GPU2) : Yes
> Peer access from Tesla V100-PCIE-32GB (GPU3) -> Tesla V100-PCIE-32GB (GPU4) : Yes
> Peer access from Tesla V100-PCIE-32GB (GPU3) -> Tesla V100-PCIE-32GB (GPU5) : Yes
> Peer access from Tesla V100-PCIE-32GB (GPU4) -> Tesla V100-PCIE-32GB (GPU0) : Yes
> Peer access from Tesla V100-PCIE-32GB (GPU4) -> Tesla V100-PCIE-32GB (GPU1) : Yes
> Peer access from Tesla V100-PCIE-32GB (GPU4) -> Tesla V100-PCIE-32GB (GPU2) : Yes
> Peer access from Tesla V100-PCIE-32GB (GPU4) -> Tesla V100-PCIE-32GB (GPU3) : Yes
> Peer access from Tesla V100-PCIE-32GB (GPU4) -> Tesla V100-PCIE-32GB (GPU5) : Yes
> Peer access from Tesla V100-PCIE-32GB (GPU5) -> Tesla V100-PCIE-32GB (GPU0) : Yes
> Peer access from Tesla V100-PCIE-32GB (GPU5) -> Tesla V100-PCIE-32GB (GPU1) : Yes
> Peer access from Tesla V100-PCIE-32GB (GPU5) -> Tesla V100-PCIE-32GB (GPU2) : Yes
> Peer access from Tesla V100-PCIE-32GB (GPU5) -> Tesla V100-PCIE-32GB (GPU3) : Yes
> Peer access from Tesla V100-PCIE-32GB (GPU5) -> Tesla V100-PCIE-32GB (GPU4) : Yes
deviceQuery, CUDA Driver = CUDART, CUDA Driver Version = 10.0, CUDA Runtime Version = 10.0, NumDevs = 6
Result = PASS
 
>>>>>>>>

gpu issues - Sample torch.device.py


No Format
more log_device_placement.py
####https://www.tensorflow.org/guide/using_gpu
import tensorflow as tf
# Creates a graph.
a = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[2, 3], name='a')
b = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[3, 2], name='b')
c = tf.matmul(a, b)
# Creates a session with log_device_placement set to True.
sess = tf.Session(config=tf.ConfigProto(log_device_placement=True))
# Runs the op.
print(sess.run(c))

...

No Format
Here is sample pbs scripts
 
Sample PBS script:
==================
cat pbs.tensor.01

#!/bin/bash 
#PBS -m abe
#PBS -M Youremail@griffith.edu.au
#PBS -V
#PBS -N testImage
#PBS -q dljun@n060
#PBS -W group_list=deeplearning -A deeplearning
#PBS -l select=1:ncpus=1:ngpus=1:mem=32gb,walltime=300:00:00
#PBS -j oe
module load anaconda/5.3.1py3
#conda info --envs
#source activate deeplearning
source activate tensorflow-gpu
##nvidia-debugdump -l
##nvidia-smi
###python main.py --cfg cfg/config3.yml --gpu 0
cd  $PBS_O_WORKDIR
python /export/home/s12345/lpbs/cuda/tensorflowTutorial.py
 

...

No Format
cat pbs.01

>>>>>>>>>>>>>>>>>>>
#!/bin/bash
#PBS -m abe
#PBS -M myemail@griffith.edu.au
#PBS -V
#PBS -N verc235
#PBS -q dljun@n060
#PBS -W group_list=deeplearning -A deeplearning
#PBS -l select=1:ncpus=16:ngpus=1:mem=32gb,walltime=300:00:00
#PBS -j oe
#cd  $PBS_O_WORKDIR
GPUNUM=`echo $CUDA_VISIBLE_DEVICES`
module load anaconda/5.3.1py3
module load cuda/10.0
#conda info --envs
#source activate deeplearning
source activate tensorflow-gpu
##nvidia-debugdump -l
##nvidia-smi
GPUNUM=`echo $CUDA_VISIBLE_DEVICES`
MASTERDIR=/export/home/s1234/scratch/home/DeepXi/ver/c2/5
cd $MASTERDIR/5
python3 deepxi.py --train 1 --gpu $GPUNUM &
cd $MASTERDIR/10
python3 deepxi.py --train 1 --gpu $GPUNUM &
cd $MASTERDIR/15
python3 deepxi.py --train 1 --gpu $GPUNUM &
cd $MASTERDIR/20
python3 deepxi.py --train 1 --gpu $GPUNUM
>>>>>>>>
Submit the job like this:
qsub pbs.01

...