Skip to end of metadata
Go to start of metadata

You are viewing an old version of this content. View the current version.

Compare with Current View Version History

« Previous Version 10 Next »


Using Conda Environments

Jupyter Notebook

Using Widgets


Requesting a GPU


Do Not Run Jupyter on the Login Nodes


Base Conda Environment


Custom Conda Environment


Another Approach


Running as a batch job

#!/bin/bash
#PBS -m abe
#PBS -M YourEmail@griffithuni.edu.au
#PBS -N  myJupyterJob
###If not using gpu,you should not request gpuq2. You can use workq or something similar
#PBS -q gpuq2
### Number of nodes:Number of CPUs:Number of threads per node.
###If not using gpu,you should not request ngpus
#PBS -l select=1:ncpus=1:ngpus=1:mem=10gb,walltime=10:00:00
# The job's working directory
cd $PBS_O_WORKDIR
module load anaconda3/2021.11
#activate your env
#source activate  protein
source /usr/local/bin/s3proxy.sh
unset PYTHONPATH
jupyter-lab --no-browser --port=8889 --ip=0.0.0.0


After running the above script and the job has started on the compute node, you run the following command on your local machine to start port forwarding. 

For n060 gpu node

ssh -CNL 5678:localhost:5678 s123456@n060.rcs.griffith.edu.au

For node gpu node n061:

ssh  -N -f -L 8889:n061:8889 -J s123456@gc-prd-hpclogin1.rcs.griffith.edu.au s123456@n061


FAQ and Troubleshooting


Getting Help


Reference

  1. https://researchcomputing.princeton.edu/support/knowledge-base/jupyter
  2. Jupyter Notebook
  • No labels