Skip to end of metadata
Go to start of metadata

You are viewing an old version of this page. View the current version.

Compare with Current View Page History

« Previous Version 8 Next »


Using Conda Environments


Using Widgets


Requesting a GPU


Do Not Run Jupyter on the Login Nodes


Base Conda Environment


Custom Conda Environment


Another Approach


Running as a batch job

#!/bin/bash
#PBS -m abe
#PBS -M YourEmail@griffithuni.edu.au

#PBS -N  cembd_jlab
#PBS -q dljun

#PBS -W group_list=deeplearning -A deeplearning
###Other options group_list=aspen -A aspen
### Number of nodes:Number of CPUs:Number of threads per node.
###If not using gpu,you should not request ngpus
#PBS -l select=1:ncpus=16:ngpus=1:mem=100gb,walltime=600:00:00
###PBS -l select=1:ncpus=32:ngpus=0:mem=100gb,walltime=300:00:00
### Add current shell environment to job (comment out if not needed)
# The job's working directory
cd $PBS_O_WORKDIR
module load python/3.8.8
module load gcc/4.9.3
source /usr/local/bin/s3proxy.sh
unset PYTHONPATH
source venv_temp_py38/bin/activate
jupyter lab --no-browser --port=5678


After running the above script and the job has started on the compute node, you run the following command on your local machine to start port forwarding. 

ssh -CNL 5678:localhost:5678 s123456@n060.rcs.griffith.edu.au

FAQ and Troubleshooting


Getting Help


Reference

  1. https://researchcomputing.princeton.edu/support/knowledge-base/jupyter
  2. Jupyter Notebook
  • No labels